Return to search

People Tracking Under Occlusion Using Gaussian Mixture Model and Fast Level Set Energy Minimization

Tracking multiple articulated objects (such as a human body) and handling occlusion between them is a challenging problem in automated video analysis. This work proposes a new approach for accurately and steadily visual tracking people, which should function even if the system encounters occlusion in video sequences. In this approach, targets are represented with a Gaussian mixture, which are adapted to regions of the target automatically using an EM-model algorithm. Field speeds are defined for changed pixels in each frame based on the probability of their belonging to a particular person's blobs. Pixels are matched to the models using a fast numerical level set method. Since each target is tracked with its blob's information, the system is capable of handling partial or full occlusion during tracking. Experimental results on a number of challenging sequences that were collected in non-experimental environments demonstrate the effectiveness of the approach.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/24304
Date09 July 2013
CreatorsMoradiannejad, Ghazaleh
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0016 seconds