Tracking multiple articulated objects (such as a human body) and handling occlusion between them is a challenging problem in automated video analysis. This work proposes a new approach for accurately and steadily visual tracking people, which should function even if the system encounters occlusion in video sequences. In this approach, targets are represented with a Gaussian mixture, which are adapted to regions of the target automatically using an EM-model algorithm. Field speeds are defined for changed pixels in each frame based on the probability of their belonging to a particular person's blobs. Pixels are matched to the models using a fast numerical level set method. Since each target is tracked with its blob's information, the system is capable of handling partial or full occlusion during tracking. Experimental results on a number of challenging sequences that were collected in non-experimental environments demonstrate the effectiveness of the approach.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/24304 |
Date | 09 July 2013 |
Creators | Moradiannejad, Ghazaleh |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0016 seconds