Hydrogels have been used for many applications, including as a mimic for the extracellular matrix (ECM) in cell culture. For example, a hydrogel containing protease-sensitive substrates can be used to create an environment that cells can modify via enzymatic degradation.
In this study, we propose combining traditional hydrogels for cell culture with “cryptic” site that bury proteolytically cleavable peptide sequences using complex coacervation. Here, the goal is to take advantage of the phase separation of coacervates to protect the cleavable peptide against degradation until acted upon by a mechanical force, such as those generated by adherent cells. To this end, we studied the encapsulation of chymotrypsin as a model protease into our coacervate system and investigated the effect of incorporation into the coacervate on its activity. We have also synthesized a peptide containing cleavable site for both chymotrypsin as our model protease and more biologically relevant matrix metalloproteinases (MMPs). Future efforts will look to incorporate this peptide into both coacervate and hydrogel and test the level of cryptic response.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-2138 |
Date | 14 May 2021 |
Creators | Sun, Yimin |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0021 seconds