ABSTRACT Alliaria petiolata (garlic mustard) is an aggressive non-native and invasive forb that negatively impacts native arbuscular mycorrhizal communities and inhibits or prevents the growth of native plant species. Invasive species mitigation and management strategies that use native revegetation vary in success. This study focuses on which species naturally regenerate in areas where A. petiolata has been mitigated to help inform restoration efforts. Seedling emergence of species within the seed bank of four plot types (uninvaded, invaded, chemically treated, and mechanically treated) were observed two years post restoration efforts to determine which native species are likely to persist to seedlings following management. Species abundance and percent cover of all plant species were recorded to evaluate the presence of species in addition to plant health and physiological differences. Native species abundance was significantly reduced within herbicide treated plots as compared to untreated and invaded plots (p=0.02). Plots treated with mechanical removal had the greatest percent cover of native plants as compared to all other plot types but were dominated by colonizing species which is typical of a disturbed habitat. Mechanical removal also resulted in a greater abundance and stability among functional groups of native species, than those treated with herbicide. Forb species dominated coverage of plots over other functional groups when treated with herbicide. Alliaria petiolata invasion and management methods significantly impacted forb and graminoid species, as they had significantly lower abundance in plots treated with herbicide. The results demonstrate that the method of removal as well as the presence of A. petiolata affects emergence of plant species from the seedbank. The additional disturbance of mechanical removal may alter successional trajectories following invasion. Herbicide treatment resulted in the most similar species abundance as the uninvaded reference plots, which had the lowest seedling emergence and percent cover.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-2456 |
Date | 01 September 2023 |
Creators | Thompson, Chloe |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0029 seconds