Return to search

Coherent perfect absorption in oneport devices with wedged organic thin-film absorbers: Bloch states and control of lasing

We are using organic small molecules as absorbing material to investigate coherent perfect absorption in layered thin-film structures. Therefore we realize strongly asymmetric resonator structures with a high optical quality dielectric distributed Bragg reflector and thermally evaporated wedged organic materials on top. We investigate the optical properties of these structures systematically by selective optical pumping and probing of the structure. By shifting the samples along the wedge, we demonstrate how relations of phase and amplitude of all waves can be tuned to achieve coherent perfect absorption. Thus almost all incident radiation dissipates in the thin organic absorbing layer. Furthermore, we show how these wedged structures on a high-quality reflective dielectric mirror can be used to determine optical dispersion relations of absorbing materials in a broad spectral range. This novel approach does not require any specific a priori knowledge on the absorbing film.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35176
Date13 August 2020
CreatorsHenseleit, Tony, Sudzius, Markas, Fröb, Hartmut, Leo, Karl
PublisherSPIE
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1117/12.2321082

Page generated in 0.0023 seconds