Return to search

Workload characterization, controller design and performance evaluation for cloud capacity autoscaling

This thesis studies cloud capacity auto-scaling, or how to provision and release re-sources to a service running in the cloud based on its actual demand using an auto-matic controller. As the performance of server systems depends on the system design,the system implementation, and the workloads the system is subjected to, we focuson these aspects with respect to designing auto-scaling algorithms. Towards this goal,we design and implement two auto-scaling algorithms for cloud infrastructures. Thealgorithms predict the future load for an application running in the cloud. We discussthe different approaches to designing an auto-scaler combining reactive and proactivecontrol methods, and to be able to handle long running requests, e.g., tasks runningfor longer than the actuation interval, in a cloud. We compare the performance ofour algorithms with state-of-the-art auto-scalers and evaluate the controllers’ perfor-mance with a set of workloads. As any controller is designed with an assumptionon the operating conditions and system dynamics, the performance of an auto-scalervaries with different workloads.In order to better understand the workload dynamics and evolution, we analyze a6-years long workload trace of the sixth most popular Internet website. In addition,we analyze a workload from one of the largest Video-on-Demand streaming servicesin Sweden. We discuss the popularity of objects served by the two services, the spikesin the two workloads, and the invariants in the workloads. We also introduce, a mea-sure for the disorder in a workload, i.e., the amount of burstiness. The measure isbased on Sample Entropy, an empirical statistic used in biomedical signal processingto characterize biomedical signals. The introduced measure can be used to charac-terize the workloads based on their burstiness profiles. We compare our introducedmeasure with the literature on quantifying burstiness in a server workload, and showthe advantages of our introduced measure.To better understand the tradeoffs between using different auto-scalers with differ-ent workloads, we design a framework to compare auto-scalers and give probabilisticguarantees on the performance in worst-case scenarios. Using different evaluation cri-teria and more than 700 workload traces, we compare six state-of-the-art auto-scalersthat we believe represent the development of the field in the past 8 years. Knowingthat the auto-scalers’ performance depends on the workloads, we design a workloadanalysis and classification tool that assigns a workload to its most suitable elasticitycontroller out of a set of implemented controllers. The tool has two main components;an analyzer, and a classifier. The analyzer analyzes a workload and feeds the analysisresults to the classifier. The classifier assigns a workload to the most suitable elasticitycontroller based on the workload characteristics and a set of predefined business levelobjectives. The tool is evaluated with a set of collected real workloads, and a set ofgenerated synthetic workloads. Our evaluation results shows that the tool can help acloud provider to improve the QoS provided to the customers.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-108398
Date January 2015
CreatorsAli-Eldin Hassan, Ahmed
PublisherUmeå universitet, Institutionen för datavetenskap, Umeå : Umeå University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationReport / UMINF, 0348-0542 ; 15.09

Page generated in 0.0022 seconds