Return to search

Performance Analysis of Decode-and-Forward Protocols in Unidirectional and Bidirectional Cooperative Diversity Networks

Cooperative communications have the ability to induce spatial diversity, increase channel capacity, and attain broader cell coverage with single-antenna terminals. This thesis focuses on the performance study of both unidirectional and bidirectional cooperative diversity networks employing the decode-and-forward (DF) protocol.

For the unidirectional cooperative diversity network, we study the average bit-error rate (BER) performance of a DF protocol with maximum-likelihood (ML) detection. Closed-form approximate average BER expressions involving only elementary functions are presented for a cooperative diversity network with one or two relays. The proposed BER expressions are valid for both coherent and non-coherent binary signallings. With Monte-Carlo simulations, it is verified that the proposed BER expressions are extremely accurate for the whole signal-to-noise ratio (SNR) range.

For the bidirectional cooperative diversity network, we study and compare the performance of three very typical bidirectional communication protocols based on the decode-and-forward relaying: time division broadcast (TDBC), physical-layer network coding (PNC), and opportunistic source selection (OSS). Specifically, we derive an exact outage probability in a one-integral form for the TDBC protocol, and exact closed-form outage probabilities for the PNC and OSS protocols. For the TDBC protocol, we also derive extremely tight upper and lower bounds on the outage probability in closed-form. Moreover, asymptotic outage probability performance of each protocol is studied. Finally, we study the diversity-multiplexing tradeoff (DMT) performance of each protocol both in the finite and infinite SNR regimes. The performance analysis presented in this thesis can be used as a useful tool to guide practical system designs for both unidirectional and bidirectional cooperative diversity networks. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2009-09-12 14:36:05.05

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5151
Date14 September 2009
CreatorsLIU, PENG
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format759518 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0026 seconds