Return to search

Performance optimization of geophysics stencils on HPC architectures / Optimização de desempenho de estênceis geofísicos sobre arquiteturas HPC

A simulação de propagação de onda é uma ferramenta crucial na pesquisa de geofísica (para análise eficiente dos terremotos, mitigação de riscos e a exploração de petróleo e gáz). Devido à sua simplicidade e sua eficiência numérica, o método de diferenças finitas é uma das técnicas implementadas para resolver as equações da propagação das ondas. Estas aplicações são conhecidas como estênceis porque consistem num padrão que replica a mesma computação num domínio multidimensional de dados. A Computação de Alto Desempenho é requerida para solucionar este tipo de problemas, como consequência do grande número de pontos envolvidos nas simulações tridimensionais do subsolo. A optimização do desempenho dos estênceis é um desafio e depende do arquitetura usada. Neste contexto, focamos nosso trabalho em duas partes. Primeiro, desenvolvemos nossa pesquisa nas arquiteturas multicore; analisamos a implementação padrão em OpenMP dos modelos numéricos da transferência de calor (um estêncil Jacobi de 7 pontos), e o aplicativo Ondes3D (um simulador sísmico desenvolvido pela Bureau de Recherches Géologiques et Minières); usamos dois algoritmos conhecidos (nativo, e bloqueio espacial) para encontrar correlações entre os parâmetros da configuração de entrada, na execução, e o desempenho computacional; depois, propusemos um modelo baseado no Aprendizado de Máquina para avaliar, predizer e melhorar o desempenho dos modelos estênceis na arquitetura usada; também usamos um modelo de propagação da onda acústica fornecido pela empresa Petrobras; e predizemos o desempenho com uma alta precisão (até 99%) nas arquiteturas multicore. Segundo, orientamos nossa pesquisa nas arquiteturas heterogêneas, analisamos uma implementação padrão do modelo de propagação de ondas em CUDA, para encontrar os fatores que afetam o desempenho quando o número de aceleradores é aumentado; então, propusemos uma implementação baseada em tarefas para amelhorar o desempenho, de acordo com um conjunto de configuração no tempo de execução (algoritmo de escalonamento, tamanho e número de tarefas), e comparamos o desempenho obtido com as versões de só CPU ou só GPU e o impacto no desempenho das arquiteturas heterogêneas; nossos resultados demostram um speedup significativo (até 25) em comparação com a melhor implementação disponível para arquiteturas multicore. / Wave modeling is a crucial tool in geophysics, for efficient strong motion analysis, risk mitigation and oil & gas exploration. Due to its simplicity and numerical efficiency, the finite-difference method is one of the standard techniques implemented to solve the wave propagation equations. This kind of applications is known as stencils because they consist in a pattern that replicates the same computation on a multi-dimensional domain. High Performance Computing is required to solve this class of problems, as a consequence of a large number of grid points involved in three-dimensional simulations of the underground. The performance optimization of stencil computations is a challenge and strongly depends on the underlying architecture. In this context, this work was directed toward a twofold aim. Firstly, we have led our research on multicore architectures and we have analyzed the standard OpenMP implementation of numerical kernels from the 3D heat transfer model (a 7-point Jacobi stencil) and the Ondes3D code (a full-fledged application developed by the French Geological Survey). We have considered two well-known implementations (naïve, and space blocking) to find correlations between parameters from the input configuration at runtime and the computing performance; thus, we have proposed a Machine Learning-based approach to evaluate, to predict, and to improve the performance of these stencil models on the underlying architecture. We have also used an acoustic wave propagation model provided by the Petrobras company and we have predicted the performance with high accuracy on multicore architectures. Secondly, we have oriented our research on heterogeneous architectures, we have analyzed the standard implementation for seismic wave propagation model in CUDA, to find which factors affect the performance; then, we have proposed a task-based implementation to improve the performance, according to the runtime configuration set (scheduling algorithm, size, and number of tasks), and we have compared the performance obtained with the classical CPU or GPU only versions with the results obtained on heterogeneous architectures.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/183165
Date January 2018
CreatorsAbaunza, Víctor Eduardo Martínez
ContributorsNavaux, Philippe Olivier Alexandre, Dupros, Fabrice
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds