Return to search

Formation et évolution des structures périglaciaires en contexte de réchauffement climatique : comparaison Terre-Mars / Formation and evolution of periglacial landforms under global warming : comparison Earth-Mars

Sur Terre, les régions périglaciaires ayant un pergélisol riche en glace peuvent enregistrer les changements climatiques globaux. Ce pergélisol contenant 50-80 % de glace en volume s'est formé lors des grandes périodes glaciaires du Pléistocène. Par la suite, ce pergélisol riche en glace a subi une dégradation intense lors de réchauffements climatiques globaux au début de la période interglaciaire de l'Holocène.La planète Mars comporte un pergélisol à l'échelle planétaire dont la formation serait associée à des changements climatiques globaux provoqués par des variations chaotiques de son orbite durant les derniers millions d'années. La région d'Utopia Planitia située dans les moyennes latitudes nord de Mars présente différents modelés de surface (“ scalloped depressions ”, polygones, cavités à la jonction des polygones) interprétés comme s'étant formés à partir d'un pergélisol contenant potentiellement une grande quantité de glace. De la même manière que sur Terre, ce pergélisol a pu enregistrer les derniers changements climatiques globaux survenus sur Mars.Cette thèse propose d'étudier comparativement l'impact des changements climatiques sur le paysage des régions périglaciaires sur Terre et sur Mars. Dans ce but, nous avons conduit des études sur le terrain des processus et des modelés périglaciaires en Yakoutie Centrale (Sibérie) et dans le delta du Mackenzie (Canada) associées à une étude géomorphologique à haute résolution des modelés d'Utopia Planitia.Notre étude montre que l'ensemble des modelés d'Utopia Planitia est similaire en morphologie, taille et association spatiale à celui de la Yakoutie Centrale et du delta du Mackenzie (lacs thermokarstiques, polygones, mares à la jonction des polygones) indiquant que la région présenterait un pergélisol riche en glace. Le pergélisol serait composé de sédiments stratifiés et dont l'âge de formation minimale est estimé entre ~ 5 et 100 Ma. Le pergélisol contiendrait un volume de glace important (≥ 50 % en volume) sur une épaisseur de ~ 70 m.De part ses caractéristiques, ce pergélisol aurait une origine syngénétique : sa formation serait le résultat d'une accumulation importante de sédiments au sein du bassin d'Utopia Planitia sous des conditions froides permettant le gel in-situ des sédiments. Les sédiments peuvent avoir été déposés par des vallées de débâcles provenant d'Elysium Mons et/ou par une activité éolienne importante. Par ailleurs, la formation synchrone d'une calotte de glace régionale près d'Utopia Planitia lors de périodes de moyenne obliquité (~ 35°) de Mars pourrait avoir induit un dépôt éolien préférentiel dans Utopia Planitia.Par la suite, le pergélisol riche en glace aurait subi une dégradation régionale importante entre ~ 5 et 10 Ma. Ce thermokarst aurait été déclenché par une insolation accrue lors de périodes de haute obliquité (~ 45°) de Mars. L'augmentation des températures aurait provoqué une déstabilisation thermique du pergélisol entraînant une sublimation de la glace, modifiant profondément le paysage de la région.Ainsi, les variations importantes de l'obliquité de Mars ont généré des changements climatiques globaux qui ont permis la formation et la dégradation du pergélisol riche en glace d'Utopia Planitia entre ~ 5 et 10 Ma. / On Earth, periglacial regions where an ice-rich permafrost is present provide a record of global climate changes. For example, the ice-rich permafrost (50-80 % of ice by volume) that occurs in Central Yakutia (Siberia) and in the Mackenzie River Delta (Canada) was formed during the glacial periods of the Pleistocene. This permafrost was subsequently degraded during global warming at the early Holocene interglacial period.Global and possibly ice-rich permafrost occurs on Mars as well. It is thought to be the product of obliquity-driven and relatively recent global climate change (i.e. dozens of Ma). Utopia Planitia, situated in the northern mid-latitudes, is dotted with possible periglacial landforms (scalloped depressions, polygons and polygon-junction pits) that could indicate the presence of an ice-rich permafrost. Similarly to Earth, this permafrost could be marker of recent global climate changes.This thesis focuses on the impact of global climate changes on the periglacial regions of Earth and Mars. With this aim in view, we conducted (i) field studies of the periglacial processes and landforms in the Central Yakutia (Siberia) and in the Mackenzie River Delta (Canada) and, (ii) a geomorphological study (based on high-resolution images) of the putative-periglacial landforms of Utopia Planitia.Our study shows that the assemblage of landforms in Utopia Planitia share traits of form, scale and spatial association with the landforms of the Central Yakutia and of the Mackenzie Delta (thermokarst lakes, polygons and polygon-junction ponds) indicating that Utopia Planitia has an ice-rich permafrost. The permafrost is composed of stratified sediments ~ 70 m thick with a high ice-content (possibly ≥ 50 % by volume).The permafrost appears to have a syngenetic origin: it was formed by an accumulation of sediments in the basin of Utopia Planitia under cold climate conditions that leaded to the in-situ freezing of the sediments. The sediments could have been deposited by outflow valleys from Elysium Mons and/or by an eolian activity. With regard to the latter, the synchronous formation of a possible regional ice-sheet near Utopia Planitia during medium-obliquity (~ 35°) periods of Mars could have induced a preferential eolian deposition in Utopia Planitia.Subsequently, the ice-rich permafrost was regionally degraded between ~ 5 and 10 Ma. The thermokarst was triggered by an increase of insolation during high-obliquity (~ 45°) periods of Mars. The increase of temperature caused the thermal destabilization of the permafrost inducing the sublimation of ground-ice, deeply modifying the landscape.Thus, important obliquity variations of Mars caused global climate changes that could have induced the formation and the degradation of the ice-rich permafrost of Utopia Planitia between ~ 5 and 10 Ma.

Identiferoai:union.ndltd.org:theses.fr/2011PA112287
Date02 December 2011
CreatorsSéjourné, Antoine
ContributorsParis 11, Costard, François
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0027 seconds