Return to search

The Structural Basis for the Interdependence of Drug Resistance in the HIV-1 Protease

The human immunodeficiency virus type 1 (HIV-1) protease (PR) is a critical drug target as it is responsible for virion maturation. Mutations within the active site (1°) of the PR directly interfere with inhibitor binding while mutations distal to the active site (2°) to restore enzymatic fitness. Increasing mutation number is not directly proportional to the severity of resistance, suggesting that resistance is not simply additive but that it is interdependent. The interdependency of both primary and secondary mutations to drive protease inhibitor (PI) resistance is grossly understudied.
To structurally and dynamically characterize the direct role of secondary mutations in drug resistance, I selected a panel of single-site mutant protease crystal structures complexed with the PI darunavir (DRV). From these studies, I developed a network hypothesis that explains how mutations outside the active site are able to perpetuate changes to the active site of the protease to disrupt inhibitor binding.
I then expanded the panel to include highly mutated multi-drug resistant variants. To elucidate the interdependency between primary and secondary mutations I used statistical and machine-learning techniques to determine which specific mutations underlie the perturbations of key inter-molecular interactions. From these studies, I have determined that mutations distal to the active site are able to perturb the global PR hydrogen bonding patterns, while primary and secondary mutations cooperatively perturb hydrophobic contacts between the PR and DRV. Discerning and exploiting the mechanisms that underlie drug resistance in viral targets could proactively ameliorate both current treatment and inhibitor design for HIV-1 targets.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1881
Date13 December 2016
CreatorsRagland, Debra A.
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved., select

Page generated in 0.0027 seconds