Return to search

Direct drive wind turbines : the effect of unbalanced magnetic pull on permanent magnet generators and bearing arrangements

Wind energy has been the fastest emerging renewable energy source over the last decade. The overriding provisos to minimise greenhouse emissions and increasing concerns regarding energy security have been the major inducements for many countries to make a resolute transition to new and non-conventional power sources. Direct-drive systems for wind turbines are potentially a more reliable alternative to gearbox driven systems. Gearboxes are liable to significant accumulated fatigue torque loading with relatively high maintenance costs. It is with this in mind that the primary focus of this research is on direct-drive wind turbines. Generators in direct-drive wind turbines tend to be of large diameter and heavier due to the support structure required to maintain as small air-gap as possible between the stationary and rotating parts of the generator. Permanent magnet generators (PMGs) are the most common type to be used within direct-drive wind turbines nowadays. Generators and other drive-train components in wind turbines experience significant varying loads, which may lead to a bearing failure. These varying loads can lead to misalignment within the drivetrain producing eccentricity between the generator rotor and stator. Rotor eccentricity generates a magnetic force referred to as Unbalanced Magnetic Pull (UMP). The induced UMP for the same rotor eccentricity is much higher in PMGs than induction generators because of the higher permanent magnet magnetic field. UMP is an important issue requiring further research. A part of this study provides a more detailed treatment of UMP under varying rotor eccentricity regimes for various permanent magnet machine topologies. The effect of UMP in direct-drive PMGs on the lifetime of the main bearing is a topic that requires more research aimed at proposing design improvements and solutions. The hope being that the availability of such solutions can be applied to practical reductions in operating costs. In brief, identification of the root causes of failure and impacts on component lifetime remain a subject of research. Establishing analytical tools for studying the impact of UMP on component lifetime in direct drive wind turbines and identifying the prospects for air gap winding machines using single bearing configuration are the two key areas for further research. Firstly, this research aims to establish the relationship between bearing forces and different types of eccentricities and UMP in direct drive machines. It is intended to use such models for predicting bearing wear and fatigue. Secondly, this research aims to establish the analytical tools for studying static, dynamic and tilting eccentricity in air-gap winding direct drive generators. Such tools are used to increase the understanding of the dynamics of direct drive PM generators. The final step of this study is using a multi-body simulation software (SIMPACK) to initiate investigations and comparison by providing assessments of electromagnetic interaction and internal drive-train loading for four possible designs for a proposed 5MW direct-drive wind turbine in response to the loads normally seen by a wind turbine. The four designs include: (a) iron-cored PM direct-drive generator supported by two main bearings, (b) airgap winding PM direct-drive generator supported by two main bearings, (c) iron-cored PM direct-drive generator supported by a single main bearing, (d) airgap winding PM direct-drive generator supported by a single main bearing. An aero-elastic simulation code (HAWC2) is used to extract the hub loads for different wind speeds corresponding to the normal operation of the wind turbine. The dynamic eccentricity and its influence on the electromagnetic interaction and consequential effects on bearing loading for all four designs is examined to determine the most optimal support structural configuration for a direct-drive system. In summary, the main aim of this thesis is studying the effect of different types of rotor eccentricities in different types of direct drive PMGs on the main bearing arrangements. The results show that static rotor eccentricity has the maximum impact compared to the other types of eccentricities. The main result of an eccentricity is the induced UMP which applies directly as an extra force on the bearings. The influence of UMP on bearing wear is studied. This influence is found to be significant in PM machines and should be considered when designing the bearing stiffness. A 20% static rotor eccentricity in a PM machine is found to induce an UMP that roughly equals third the total weight of the machine. A single bearing design for a direct-drive wind turbine is proposed and compared with a conventional two-bearing design. The results show that the Iron-cored PM direct-drive generator supported by two main bearings design and airgap winding PM direct-drive generator supported by a single main bearing design have advantages over the other two designs in this study.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:756640
Date January 2018
CreatorsMostafa, Kaswar
ContributorsMueller, Markus ; Macpherson, Ewen
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/31360

Page generated in 0.002 seconds