Two important mechanisms in preparation of ultrathin films of magnetic oxides were systematically investigated in this work. First, influence of epitaxial strain on resulting magneto-optical properties of La2/3Sr1/3MnO3 (LSMO) ultrathin films was studied. The investigated films were grown by pulsed laser deposition on four different substrates, providing a broad range of induced epitaxial strains. Magnetic properties were found to deteriorate with increasing value of the epitaxial strain, as expected due to the unit cell distortion increasingly deviating from the bulk and effect of the magnetically inert layer. A combination of spectroscopic ellipsometry and magneto-optical Kerr effect spectroscopy was used to determine spectra of the diagonal and off-diagonal elements of permittivity tensor. The off-diagonal elements confirmed presence of two previously reported electronic transitions in spectra of all films. Moreover, they revealed another electronic transition around 4.3 eV only in spectra of films grown under compressive strain. We proposed classification of this transition as crystal field paramagnetic Mn t2g → eg transition, which was further supported by ab initio calculations. A key role of strain in controlling electronic structure of ultrathin perovskite films was demonstrated. Dynamic application of...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:398669 |
Date | January 2019 |
Creators | Zahradník, Martin |
Contributors | Veis, Martin, Herranz, Gervasi, Legut, Dominik |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds