Return to search

Deriving Dust Properties in Star Forming Clumps: a Look Across the Perseus Molecular Cloud with Herschel and SCUBA-2

Herschel and JCMT surveys of nearby star-forming regions have provided excellent images of cold dust emission across several wavelengths with unprecedented dynamic range and resolutions. Here we present spectral emissivity index and temperature maps of dust in the star-forming clumps of the Perseus molecular cloud determined from fitting SEDs to the combined Herschel and JCMT observations in the 160 μm, 250 μm, 350 μm, 500 μm, and 850 μm bands, employing the technique developed by Sadavoy et al. (2013). In NGC1333, the most complex and active star-forming clump in Perseus, we demonstrate that CO line contamination in the JCMT SCUBA-2 850 μm band is typically insignificant. The derived spectral emissivity index, β, and dust temperature, T, ranges between 0.8 - 3.0 and 7 - 50 K, respectively. Throughout Perseus, we see indications of heating from B stars and embedded protostars, and smooth β variations on the smaller scales. The distribution of β values seen in each clump differs from one clump to another, and is in general different from the diffuse ISM values (i.e., ~2), suggesting that dust grain evolution is significant in star-forming clumps. We also found coincidences between low β regions and local temperature peaks as well as locations of outflows, which may provide hints to the origins of these low β value grains, and dust grain evolution in star-forming clumps in general. / Graduate / mcychen@uvic.ca

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/5984
Date22 April 2015
CreatorsChen, Michael Chun-Yuan
ContributorsDi Francesco, James, Johnstone, D., Willis, Jon
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0016 seconds