Return to search

Improving the Energy Efficiency of Ethanol Separation through Process Synthesis and Simulation

Worldwide demand for energy is increasing rapidly, partly driven by dramatic economic growth in developing countries. This growth has sparked concerns over the finite availability of fossil fuels and the impact of their combustion on climate change. Consequently, many recent research efforts have been devoted to the development of renewable fuels and sustainable energy systems. Interest in liquid biofuels, such as ethanol, has been particularly high because these fuels fit into the conventional infrastructure for the transportation sector.
Ethanol is a renewable fuel produced through the anaerobic fermentation of sugars obtained from biomass. However, the relatively high energy demand of its production process is a major factor limiting the usefulness of ethanol as a fuel. Due to the dilute nature of the fermentation product stream and the presence of the ethanol-water azeotrope, the separation processes currently used to recover anhydrous ethanol are particularly inefficient. In fact, the ethanol separation processes account for a large fraction of the total process energy demand.
In the conventional ethanol separation process, ethanol is recovered using several distillation steps combined with a dehydration process. In this dissertation, a new hybrid pervaporation-distillation system, named Membrane Dephlegmation, was proposed and investigated for use in ethanol recovery. In this process, countercurrent vapour-liquid contacting is carried out on the surface of a pervaporation membrane, leading to a combination of distillation and pervaporation effects. It was intended that this new process would lead to improved economics and energy efficiency for the entire ethanol production process.
The Membrane Dephlegmation process was investigated using both numerical and experimental techniques. Multiphase Computational Fluid Dynamics (CFD) was used to study vapour-liquid contacting behaviour in narrow channels and to estimate heat and mass transfer rates. Results from the CFD studies were incorporated into a simplified design model and the Membrane Dephlegmation process was studied numerically. The results indicated that the Membrane Dephlegmation process was more efficient than simple distillation and that the ethanol-water azeotrope could be broken. Subsequently, a pilot-scale experimental system was constructed using commercially available, hydrophilic NaA zeolite membranes. Results obtained from the experimental system confirmed the accuracy of the simulations.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./20100
Date13 July 2011
CreatorsHaelssig, Jan B.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0018 seconds