O presente estudo tem por objetivo estudar a aplicabilidade de modelos de regressão binária com resposta contínua na análise de dados do SINASC (Sistema de Informações de Nascidos Vivos), analisando suas vantagens, limitações e estratégias na estimação de parâmetros ao identi car os fatores de riscos para baixo peso ao nascer. Muitos autores vêm utilizando os dados do SINASC para estudar as variáveis que estão associadas ao baixo peso ao nascer. Estes autores geralmente utilizam o modelo usual de regressão logística, o qual analisa somente respostas binárias (a variável resposta é codi cada como 1: baixo peso ao nascer, 0: caso contrário). O modelo de regressão com resposta contínua foi utilizado para estudar as variáveis associadas aos recém-nascidos com maior propensão a um peso ao nascer inferior ao ponto de corte 2500g, ou seja, a resposta é expressa em uma variável contínua. Nesta situação, uma extensão do modelo tradicional foi utilizada visando a possibilidade de obter-se estimativas mais precisas. Para a estimação de parâmetros do modelo de regressão binária com resposta contínua, foi utilizado o método da máxima verossimilhança. Os resultados obtidos a partir da metodologia proposta possui as seguintes vantagens em relação ao modelo usual: (a) o modelo de regressão proposto foi capaz de predizer o baixo peso ao nascer com maior precisão; (b) o modelo proposto evita problemas de separação persistentes em modelos usuais. Desta forma, o modelo estudado poderá oferecer signi cativas contribuições à Saúde Coletiva, ao trazer uma nova possibilidade de análise de dados desta área. / The objective of this dissertation is to study the applicability of binary regression models for continuous outcomes in the data analysis from SINASC (Brazilian Live Births Information System), analyzing its advantages, limitations and strategies in the estimation of parameters, when identifying the risk factors for low-birth-weight. Many authors have been using data from SINASC to study the variables that are associated with the low-birth-weight. These authors typically use the usual logistic regression model, which analyzes only binary responses (the dependent variable is coded as 1 for low-birth-weight and 0 for otherwise). The regression model with continuous response was proposed and used to study the variables associated with the newborns with higher propensity to a birth weight below the cutoff point of 2500 g, that is, the answer is expressed as a continuous variable. In this situation, an extension method of the traditional model was used in order to enable obtaining more accurate estimates. For the estimation of the parameters from binary regression model with continuous response, the maximum likelihood method was used. The results obtained from the proposed methodology brought these following advantages comparing with the usual model: (A) the proposed regression model was capable for predicting low birth weight with a bettter precision; (B) the proposed model can process the persistent problems of separation present in the conventional models. Thus, the studied method may offer significant contributions to the Public Health, bringing new possibilities for data analysis in this area.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25032011-122803 |
Date | 25 January 2011 |
Creators | Zhuofan, Wu |
Contributors | Martinez, Edson Zangiacomi |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds