Return to search

A mathematical model for simulating pesticide fate and dynamics in the environment (PESTFADE) /

A one-dimensional transient mathematical model which can predict simultaneous movement of water and reactive solutes through homogeneous soil systems under saturated/unsaturated conditions is developed. The physically-based numerical model, called PESTFADE, considers the interactive processes/mechanisms such as mass flow, plant uptake, adsorption/desorption, dispersion, volatilization, chemical/microbial degradation and runoff in the simulation. / The PESTFADE model employs SWACROP, a model developed in the Netherlands, to simulate transient water flow in the unsaturated zone; evaluates non-equilibrium sorption in macropores, analyzes soil heat flow to to model microbial degradation, calculates pesticide partitioning in runoff/sediment as affected by agricultural management practices, and describes first order degradation and sorption kinetics. The governing partial differential equation describing the various processes is solved numerically via the Numerical Method of Lines (NMOL) technique, and the computer programs are written in FORTRAN 77. The resulting computer code (PESTFADE), is run on a microcomputer and has been implemented for interactive simulation on IBM PC or compatible microcomputers. / The model was tested and validated using actual data measured from field plot experiments involving herbicide atrazine which was post-emergently applied in a corn field on a loam soil. Various analytical solutions were used to check the accuracy of the different components of PESTFADE, and parametric sensitivity analyses were performed to determine how the model output reacts to changes in some selected input parameters. / Results indicate that model predictions generally agreed with measured concentrations of atrazine and compared closely with the analytical solutions. Moreover, model performance tests showed that predicted values are within acceptable ranges of model accuracy and bound of experimental uncertainties. It was also found that the model is very sensitive to degradation rate constant (k), sorption coefficient (K$ sb{ rm d})$ and soil temperature and slightly sensitive to management practice (CN) and sorption site fraction (F). Finally, the various field scenarios and pathways for non-point source contamination evaluated in the study have demonstrated the wide applicability and flexibility of PESTFADE.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.70275
Date January 1991
CreatorsClemente, Roberto Sulit
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Agricultural Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001275644, proquestno: AAINN74590, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds