This paper presents a class of Stochastic Petri Nets with concurrent transition firings. It is assumed that transitions occur in steps and that for every step each enabled transition decides probabilistically whether it wants to participate in the step or not. Among the transitions which what to participate in a step, a maximal number is chosen to perform the firing step. The observable behavior is defined and equivalence relations are introduced. The equivalence relations extend the well-known trace and bisimulation equivalences for systems with step semantics to Stochastik Petri Nets with concurrent transition firing. It is shown that the equivalence notions form a lattice of interrelations.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:26298 |
Date | 15 January 2013 |
Creators | Buchholz, Peter, Tarasyuk, Igor V. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:workingPaper, info:eu-repo/semantics/workingPaper, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-79344, qucosa:24841 |
Page generated in 0.0138 seconds