Return to search

Controlled High Pressure Slurry Injection in Water Jetting Applications-A New Approach

The ability of an abrasive assisted water jet to cut through rocks and metals has potential applications in the oilfield. However, the size of cutting nozzle has not allowed water jet to be used on commercial scale for drilling reservoir rocks down-hole. Inefficient momentum transfer to abrasive particles from pressurized water and lack of abrasive feed rate control in commercially available units has further discouraged the use of water jet in oil industry.
Despite various technical difficulties, immense power of water jet cannot be neglected. Studies have shown that momentum transfer can be improved significantly, if abrasive particles are introduced upstream of the nozzle. Limited techniques are available where abrasives are first suspended in a fluid stream and are then introduced in high-pressure water stream upstream of the nozzle. However, control over abrasive feed rate was lacking in past studies.
In this investigation, an experimental apparatus was assembled a polymer solution was injected upstream of the nozzle. Injection rate was controlled, by varying the rpm of the plunger pump. The apparatus was used to study the effect of Xanthan and Polyacrylamide on water jet coherency.
It is shown that addition of polymer leads to a focused water jet for a longer distance before it starts disintegrating into a mist. Furthermore, there is an optimum concentration of polymer at which the jet stays focused for the longest distance.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07282005-120913
Date29 July 2005
CreatorsKumar, Manish
ContributorsAnuj Gupta, Julius Langlinais, Dandina N Rao
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07282005-120913/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.003 seconds