Return to search

Analysis of Alternative Well Control Methods for Dual Density Deepwater Drilling

The recent push into deepwater is currently limited by high drilling costs resulting from conventional well designs. As a result, dual gradient drilling methods have been proposed. This research investigates riser gas-lift as a potential means to implement a dual gradient system. A primary concern is well control in a system containing so many different density fluids and different flow paths.
The specific concerns addressed in this study were kick detection, cessation of formation feed-in, removal of kick fluids, and re-establishing hydrostatic control with a constant bottom hole pressure method. These concerns were studied using a transient, multiphase simulator whose validity was confirmed with comparison to transient, multiphase flow tests in a test well.
Conventional kick detection methods relying on the pit gain and return flow rate were concluded to be effective. Two alternatives for stopping formation flow were considered, a âload-upâ method of reducing the nitrogen rate versus closing a subsea BOP. BOP closure was shown to be more reliable for stopping flow and minimizing kick volume. Further, a relatively conventional approach of circulating up a gas-lifted choke line against a surface choke was compared to a dynamic approach based on reducing the nitrogen rate and to the use of a seafloor choke. It was concluded that methods using a choke were much simpler and more effective for controlling pressure than controlling the nitrogen rate. The subsea choke has an advantage over the surface choke due to faster pressure responsiveness, smaller pressure variation, and needing fewer and smaller choke adjustments.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-12152004-124203
Date15 December 2004
CreatorsStanislawek, Mikolaj
ContributorsJohn Rogers Smith, Andrew Wojtanowicz, Julius Langlinais
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-12152004-124203/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0026 seconds