Return to search

The Karikari plutonics of Northland, New Zealand: the petrology of an arc-type intrusion and its envelope

The Karikari Plutonics are Early Miocene in age and consist of two plutonic bodies, with age relations delineated by cross- cutting relationships, and associated later stage dykes. The older pluton is a complex body exhibiting textural variability, cumulate-style crystallisation, varied enclaves (indicating complex magma chamber processes including convection and crystallisation along steeply-dipping northwest oriented fronts) and a multi-phase structural and dyke intrusion history. Modal analysis shows this body to be diorite to quartz monzodiorite, and geochemically calc-alkaline and medium-K in nature. In contrast the younger pluton is extremely homogeneous and intruded by a single, volumetrically sparse, dyke phase. Modally quartz monzonite to granite (adamellite), and high-K calc- alkaline, this body has higher Si, K-group + Na, REE group and HFSE group elements than the older pluton. Mineral differences are confined to An contents in plagioclase, En values in orthopyroxenes and a wider range of Al in younger pluton hornblendes. Igneous differentiation can be modelled within the older pluton and between the older and younger bodies, by fractional crystallisation dominated by plagioclase, with subordinate ortho- and clino- pyroxene and oxide phases. The dykes show a compositional range from basaltic andesite to dacite, with andesite volumetrically dominant. A temporal trend can be seen with younger dykes becoming more felsic and of greater volume, and changing orientation from northeast to northwest. Two subdivisions can be made based on the presence or absence of hornblende. Pyroxene only dykes are mostly medium-K and dominantly andesitic, whereas hornblende-bearing lithologies are both medium-K and high-K, are andesite and dacite, and appear to be more evolved chemically. The rock envelope into which the Karikari Plutonics was intruded consists of Cretaceousage basalts, rhyolites and sedimentary lithologies. Although a regular contact aureole is not exposed, the lowest grade of contact metamorphism is delineated by the first occurrence of biotite. Rocks equivalent to the hornblende hornfels facies are widespread and rare pyroxene hornfels are found adjacent to contacts. Alteration and veining, particularly prevalent in fault/shear zones, and the presence of a magmatic-hydrothermal type breccia are evidence for a hydrothermal system associated with the waning stages of Lower Miocene-age igneous activity on the Karikari Peninsula. Fluid inclusion and stable isotope data indicates the presence of fluids of both magmatic and meteoric origin. The Karikari Plutonics are correlated with the arc-type regional association of Northland and the Coromandel Peninsula. The source of these rocks is broadly M-type, hydrous and involving subduction zone, and modified mantle wedge components, but with some unspecified crustal involvement indicated by Sr isotopes. Specifically this source is modelled, for the Karikari Plutonics, as having LREE enriched 2x relative to HREE and partially melting (< 15% of the source) at the base of the crust (≥30 km). These melts gave rise to the arc-type association either erupting at the surface, or ponding in upper crustal (≤10 km) magma chambers.

Identiferoai:union.ndltd.org:ADTP/275051
Date January 1990
CreatorsRuddock, Richard Sean
PublisherResearchSpace@Auckland
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsItems in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated., http://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm, Copyright: The author

Page generated in 0.002 seconds