Return to search

Controls on the distribution of gas hydrates in sedimentary basins

Natural gas hydrates store a substantial portion of the Earth's organic carbon, although their occurrence is restricted by thermobaric boundaries and the availability of methane-rich fluids. The complexity of geological systems and the multiphase flow processes promoting hydrate formation can result in a mismatch between the predicted and the observed hydrate distribution. The purpose of this research is to achieve a better comprehension of the factors that influence the distribution of gas hydrates and the mechanism of fluid movements beneath and across the gas hydrate stability zone (GHSZ). Therefore, this study integrates seismic, petrophysical and geochemical data from different gas hydrate provinces. This work provides evidence that hydrates can occur below bottom-simulating reflectors, in the presence of sourcing thermogenic hydrocarbons. The relationship between fluid-escape pipes and gas hydrates is further explored, and pipe-like features are suggested to host a significant volume of hydrates. The host lithology also represents a critical factor influencing hydrate and free gas distribution and, in evaluating a natural gas hydrate system, needs to be considered in conjunction with the spatial variability in the methane supply. The three-dimensional distribution of gas hydrate deposits in coarse-grained sediments, representing the current target for hydrate exploration, is shown to be correlated with that of the underlying free gas zone, reflecting sourcing mechanisms dominated by a long-range advection. In such systems, the free gas invasion into the GHSZ appears controlled by the competition between overpressure and sealing capacity of the gas hydrate-bearing sediments. Globally, the thickness of the free gas zones is regulated by the methane supply and by different multi-phase flow processes, including fracturing, capillary invasion and possibly diffusion. In conclusion, this research indicates that geological, fluid flow and stability factors interweave at multiple scales in natural gas hydrate systems.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:740873
Date January 2017
CreatorsPaganoni, Matteo
ContributorsFoschi, Martino ; Cartwright, Joe A. ; Shipp, Craig R. ; Van Rensbergen, Pieter
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://ora.ox.ac.uk/objects/uuid:6887b849-5668-4510-bc15-c416044dd043

Page generated in 0.0023 seconds