A key factor in studying evolutionary biology is an understanding of the mechanisms organisms utilise in the ongoing process of adaptation. When faced with a heterogeneous and unpredictable environment, we expect organisms to evolve either as specialists or generalists, yet a unifying theory as to which will evolve is still lacking due to conflicting hypotheses based on limited empirical evidence. Phenotypic plasticity allows a single genotype to express different phenotypes, and has been found as an adaptive response to changing environments in all major taxa. With the advent of genomics it has become possible to study the underlying genetics of this phenomenon. It is however becoming clear that there is no single principle governing the plastic response, but rather a complex set of interactions between what appears to be regulatory and structural genes. With empirical data only recently becoming more readily available, the modelling of plastic responses are often still founded on the theoretical predictions and assumptions for which there is little proof. To bridge the gap between theory and nature, the challenge facing scientists today is the construction of experimental systems where theoretical predictions can be scrutinised. Given that phenotypic plasticity is a widespread phenomenon, understanding the magnitude and constraints of this response is an important issue in the study of evolution. Models have predicted a correlation between genome size and phenotypic plasticity, with increased genome size (complexity) linked to higher levels of phenotypic plasticity. Experimental findings, however, increasingly point to plasticity being governed by complicated sets of interactions between various parts of the genome, the adaptive landscape, and environmental cues. In the work presented here, a study was designed to test for a correlation between genome size and the level of plasticity by, looking at the fitness response of phages exposed to varying temperature. Seven phages differing in genome size and genome composition were used. Genome sizes ranged from 5386 bp to 170 000 bp. Taking advantage of the short generation times of phages, fitness could be measured as the growth rate per hour, which was compared among the different phage groups. The growth of large populations within a constant, controlled environment minimized the complications of environmental heterogeneity, and allowed for quantitative measure of the response to different temperatures. This was used to gain insight into how genome size relates to the level of phenotypic plasticity. Limited generation numbers were allowed for, to ensure population growth could be directly related to the plasticity of the genome, since numerous generations would be required for the effects of selection to become apparent. Adsorption rates are influenced by temperature, and were therefore measured to determine if it had a significant effect on the resulting population density. Results showed a marginal interaction between genome size and phenotypic plasticity, with adsorption rate having no significant effect. More experimental work would be required to verify this finding. / Dissertation (MSc (Genetics))--University of Pretoria, 2006. / Genetics / unrestricted
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/26157 |
Date | 09 July 2008 |
Creators | Meyer, Aret |
Contributors | Greeff, Jaco M. (Jacobus Maree), Durbach, S., upetd@up.ac.za |
Publisher | University of Pretoria |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Dissertation |
Rights | © 2006, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. |
Page generated in 0.0022 seconds