Return to search

Construction and development of bioluminescent Pseudomonas aeruginosa strains : application in biosensors for preservative efficacy testing

Whole cell biosensors have been extensively used for monitoring toxicity and contamination of compounds in environmental biology and microbial ecology. However, their application in the pharmaceutical and cosmetics industries for preservative efficacy testing (PET) has been limited. According to several pharmacopoeias, preservatives should be tested for microbial activity using traditional viable count techniques; the use of whole cell microbial biosensors potentially provides an alternative, fast, and efficient method. The aim of the study was to construct and develop whole cell microbial biosensors with Pseudomonas aeruginosa ATCC 9027. Constitutive promoters: PlysS, Pspc, Ptat, Plpp and PldcC and the lux-cassette were inserted into plasmid pME4510 and transformed into P. aeruginosa ATCC 9027 cells to produce bioluminescent strains. Plasmids were found to be maintained stably (~50 copies per cell) throughout the growth and death cycle. The novel bioluminescent strains were validated in accordance with the pharmacopoeia using bioluminescence detection and quantification followed by comparison with the traditional plate counting method. The bioluminescent method was found to be accurate, precise and equivalent at a range of 103 – 107 CFU/mL, as compared with plate counting. Recovery of bacterial cells was quantified using bioluminescence; this method proved to be accurate with percentage recoveries between 70-130% for all bioluminescent strains. The method was also more precise (relative standard deviation less than 15%) than the traditional plate counting method or the ATP bioluminescent method. Therefore, the bioluminescent constructs passed/exceeded pharmacopoeial specified criteria for range, limit of detection, accuracy, precision and equivalence. Physiology of the validated bioluminescent strains was studied by assessing the growth and death patterns using constitutive gene expression linked with bacterial replication. Promoter strengths were evaluated at various stages of the growth and death pattern and related to promoter sequences. PlysS, Ptat and Plpp were relatively strong promoters whilst PldcC and Pspc were relatively weak promoters. Relative promoter strength decreased in the order of Plpp>Ptat>PlysS>PldcC>Pspc during the exponential phase whilst Ptat was stronger than Plpp during the stationary phase of growth. Plpp had its highest level of expression during the exponential phase, while Ptat had relatively stable lux expression during the stationary phase. Correlations between relative bioluminescence and CFU at 24 hours were greater than 0.9 indicating a strong relationship for all bioluminescent strains. Reduction in correlation coefficients to approximately 0.6 between relative bioluminescence and CFU and between relative fluorescence and CFU beyond 24 hours indicated that a certain proportion of cells were viable but non-culturable. Tat-pME-lux showed steady bioluminescence compared to CFU count (R>0.9) throughout 28 days of growth. Equivalence analysis showed no significant difference between the bioluminescence and plate count method throughout 28 days of growth for all five bioluminescent strains. Applicability of these novel bioluminescent strains was evaluated for preservative efficacy tests (PET) using bacterial replication and bioluminescence as a measure of constitutive gene expression. PET using benzalkonium chloride and benzyl alcohol showed no significant difference between the bioluminescent method and the plate count method. Good correlations between bioluminescence, CFU count and fluorescence were obtained for benzalkonium chloride (BKC) concentrations (R>0.9) between 0.0003% and 0.0025% against strains lysR25, lppR4 and tatH5. Similarly, good correlations (R>0.9) between the three parameters were obtained for benzyl alcohol (BA) concentrations between 0.125% and 2% against strains lysR25, lppR4 and tatH5. The bioluminescent method and traditional plate counting method were equivalent for concentrations of BKC (0.0003 - 0.02%) and BA (0.25 - 2%) during preservative efficacy tests. These bioluminescent constructs therefore are good candidates for selection for preservative efficacy testing. The bioluminescent method and traditional plate counting method were also found to be equivalent for construct tatH5 at a concentration of 0.125% BA. PET testing with BKC and BA showed that tatH5-pMElux (R>0.9) had consistently high correlation coefficients between CFU and relative bioluminescence. Together with the results from growth and death kinetics, where tatH5 showed the greatest constitutive expression, it can be concluded that P. aeruginosa ATCC 9027 tatH5-pMElux is the best construct for testing various antimicrobial agents. This study has shown that according to the pharmacopoeial requirements, the bioluminescent method is more accurate, precise and equivalent to the traditional plate counting method and therefore can be utilised instead of the traditional plate counting method for the purpose of preservative efficacy testing.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:638084
Date January 2014
CreatorsShah, Niksha Chimanlal Meghji
PublisherUniversity of Hertfordshire
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/2299/15592

Page generated in 0.002 seconds