This thesis applies digital repetitive control to a single-phase DC-to-AC converter,
with some proposed designs to improve stability and enhance performance of the
converter under various load variations.
A practical DC-to-AC converter is required to convert DC power to stable AC
power with low harmonic distortion when attached to various linear or nonlinear loads.
This thesis combines repetitive control with feedback dithering modulation and optimal
state feedback to control the converter. The repetitive control is responsible for
regulating output power and eliminating harmonics, while the feedback dithering
modulation for switching the power transistors with reduced switching noise and the
state feedback for stabilizing the converter under various load variations.
The presented control and modulation schemes of the power converter are
implemented on an FPGA (Field Programmable Gate Array). The experiments confirm
the excellent performance and robustness of the converter, indicating a total harmonic
distortion of less than 0.5% for the converter when attached to various linear or
nonlinear loads.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0829112-114350 |
Date | 29 August 2012 |
Creators | Wang, Sing-han |
Contributors | Chung-Yao Kao, Shiang-Hwua Yu, Tzung-Lin Lee, Jau-Woei Perng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0829112-114350 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0017 seconds