Return to search

Phase space methods in finite quantum systems.

Quantum systems with finite Hilbert space where position x and momentum
p take values in Z(d) (integers modulo d) are considered. Symplectic tranformations
S(2¿,Z(p)) in ¿-partite finite quantum systems are studied and
constructed explicitly. Examples of applying such simple method is given
for the case of bi-partite and tri-partite systems. The quantum correlations
between the sub-systems after applying these transformations are discussed
and quantified using various methods. An extended phase-space x¿p¿X¿P
where X, P ¿ Z(d) are position increment and momentum increment, is introduced.
In this phase space the extended Wigner and Weyl functions are
defined and their marginal properties are studied. The fourth order interference
in the extended phase space is studied and verified using the extended
Wigner function. It is seen that for both pure and mixed states the fourth
order interference can be obtained. / Ministry of Higher Education, Sultanate of Oman

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/4250
Date January 2009
CreatorsHadhrami, Hilal Al
ContributorsVourdas, Apostolos
PublisherUniversity of Bradford, Department of Computing
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0023 seconds