Over the past decades, numerous studies have shown that curcumin has potent biological activities. As a potential chemopreventing agent, curcumin was demonstrated to exert anti-cancer effects in both in vitro and in vivo studies. However, low bioavailability of curcumin limited human clinical trials and its application to be formulated as therapeutics. In this thesis, we will summarize the anti-cancer effects of curcumin in animal studies and clinical trials. In addition, an SAR study will be introduced to elucidate the mechanism of curcumin degradation at physiological pH. We synthesized various curcumin analogues and compared their stability in phosphate buffer using HPLC and colorimetry assay. The results not only demonstrated that the -OH group and the methoxy group play a critical role in stability of curcumin in physiological environment, but also support the proposed mechanism of phenolic radical formation by which curcumin degrades to its major product bicyclopentadione.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1387 |
Date | 13 July 2016 |
Creators | Du, Zheyuan |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0024 seconds