Over the past few years a large amount of work has provided growing insight into the molecular mechanisms that direct post-Golgi trafficking events in the budding yeast Saccharomyces cerevisae. However, a key event in this process, the formation of secretory vesicles at the Golgi and sorting of cargo into these transport carriers, remains poorly understood. It has been demonstrated that phosphatidylinositol 4-phosphate (PI(4)P) generated by the PI(4)-kinase Pik1p plays an essential role in maintenance of Golgi secretory function and morphology. Up to now relatively few targets of Pik1/PI(4)P signaling at the Golgi have been identified and it thus remains elusive how Pik1p mediates its essential function in Golgi secretion. During my thesis work, I used synthetic genetic array analysis (SGA) of a temperature-sensitive mutant allele of PIK1 (pik1-101) in order to gain better understanding of Pik1p function at the TGN and to isolate new regulators of post-Golgi transport in yeast. I identified a total of 85 genes, whose deletion resulted in a synthetic growth defect when combined with the pik1-101 mutation. 21 isolated deletion mutants were used for further analysis, several of which were found to share common trafficking phenotypes with the pik mutant. A striking result of the screen was the finding that Pik1p interacts genetically with several components of a potential post-translational modification pathway referred to as “urmylation pathway”. In addition, a novel, previously uncharacterized subunit of the Transport protein particle (TRAPP) complex was isolated as genetic interactor of Pik1p, suggesting a function for the TRAPP complex in a Pik1p dependent trafficking pathway. Using tandem affinity purification, I could also demonstrate that TRAPP shows previously unknown interactions with other regulators of post-Golgi transport. The second part of this thesis describes the development of a new visual screening approach. Recent work indicates that secretory cargo in yeast can be transported to the cell surface via at least two different exocytic branches. Upon block of one pathway cargo can be partially redistributed into the other pathway. This partial redundancy of exocytic pathways provides one explanation why genetic screens in the past were largely unsuccessful in identifying the molecular machinery that directs vesicle budding and cargo sorting at the TGN. I collaborated in the development of a novel screening method that was devised to circumvent this problem. The method took advantage of the systematic yeast knockout array and was based on the assumption that a defect in cargo sorting and cell surface transport could be detected as intracellular accumulation of a GFP-tagged model cargo. The suitability of our approach for identifying regulators of secretory transport has been demonstrated in a small-scale pilot study that will be presented in this thesis. The screening method proofed to be applicable on a genome-wide scale and can now be used for the screening of additional markers. This novel approach provides an entry point to the comprehensive study of TGN sorting.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24850 |
Date | 29 September 2006 |
Creators | Gravert, Maike |
Contributors | Walch-Solimena, Christiane, Hoflack, Bernard, Fischer von Mollard, Gabriele |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds