Return to search

Synthesis and Characterization of Photochromic Indolyl Substituted Fulgides and Fulgimides

The fulgide and fulgimide family constitutes an important class of organic photochromic compounds. The ability of fulgides and fulgimides to interconvert between two key forms by irradiation of different wavelength of light has made them promising material in optical memory devices, optical switches and sensors, and specialty dyes and inks. Thermal stability and hydrolytic stability of fulgides and fulgimides are essential for their practical applications. A deuterated trifluoromethyl indolylfulgide was synthesized based on the synthetic pathway of the proteo trifluoromethyl indolylfulgide using commercially available deuterated starting materials. Deuteration of the isopropylidene group improved the thermal stability of the indolylfulgide by a factor of 7. Fulgimides are the most important fulgide derivatives. Fulgimides improve the hydrolytic stability of fulgides by replacing the succinic anhydride ring with a succinimide ring. A novel trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide was synthesized from trifluoromethyl indolylfulgide. The trifluoromethyl indolylfulgide was synthesized on a large scale in five steps with an overall yield of 18%. The indolylfulgide was then converted to indolylfulgimide by aminolysis follow by dehydration. The N-ethoxycarbonylmethyl indolylfulgimide showed enhanced hydrolytic stability and photochemical stability in 70/30 ethanol/water. Three novel aqueous soluble fulgimides, trifluoromethyl carboxylic acid indolylfulgimide, dicarboxylic acid indolylfulgimide, and H-carboxylic acid indolylfulgimide, were synthesized. In sodium phosphate buffer (pH 7.4) at 37 ÂșC, an unusual hydrolysis of the trifluoromethyl group of the closed form of the carboxylic acid indolylfulgimide resulted in the dicarboxylic acid indolylfulgimide which has an additional carboxylic acid group. The closed form of dicarboxylic acid indolylfulgimide was further decarboxylated to generate H-carboxylic acid indolylfulgimide which was not photochromic. The trifluoromethyl dicarboxylic acid indolylfulgimide is the most robust fulgimide yet reported in aqueous solution. A novel aqueous soluble methyl carboxylic acid indolylfulgimide was synthesized from methyl indolylfulgide. The methyl indolylfulgide was synthesized in five steps with an overall yield of 21%. The methyl carboxylic acid indolylfulgimide was synthesized by aminolysis follow by dehydration. The methyl carboxylic acid indolylfulgimide is expected to have improved thermal and photochemical stability in aqueous solutions relative to the trifluoromethyl analog.

Identiferoai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-1359
Date29 October 2010
CreatorsChen, Xi
PublisherFIU Digital Commons
Source SetsFlorida International University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceFIU Electronic Theses and Dissertations

Page generated in 0.0019 seconds