Return to search

The investigation of novel polymer-photochromic conjugates

My research has focussed on the development of a technique to tailor photochromic switching rates by creating a customised local environment for the dye within an otherwise rigid host matrix. Living radical polymerisation offers the potential to design such a system. A living radical initiator based on a spirooxazine compound was used to polymerise a polymer chain of well controlled molecular weight and polydispersity. This technique facilitated the construction of a conjugate with every photochromic moiety convalently attached to a polymer chain with uniform characteristics. The photochromic behaviour of these new polymer-spirooxazine conjugates were investigated in a cross-linked polymer matrix with a Tg of approximately 120??C. It is well known that photochromic switching is susceptible to local environment effects such as rigidity, free volume and polarity.1, 2 The goal of these systems was to create a uniform local environment which would facilitate controlled changes in the photochromic switching rates. The photophysical investigation of these systems demonstrated the success of this technique. The photochromic rates were directly related to the characteristics of the polymer conjugate. It was postulated the conjugates acted as a customised local environment for the photochromic moiety, encapsulating it from the host matrix. Consequently systematic tailoring of the photochromic switching rates was achieved by changes in the characteristics of the attached polymer. To our knowledge this is the first technique to control local environment of a photochromic compound and thus the first example of systematic tuning of photochromic switching rates. Throughout this research, several characteristics of the attached polymer were modified to give a series of rules for the tuning of photochromic switching rates using this technique. The largest variation in switching speed is achieved through variation of Tg. A range of photochromic rates from extremely slow to near solution-like can be easily achieved. The necessary variations in Tg can be achieved easily using living radical polymerisation techniques. The use of different homopolymers, block and random copolymers were all demonstrated successfully in this work. For finer tuning of the photochromic rates, changes in chain length can be used. It was also found the best living radical polymerisation method for this work was ATRP due to the bulky or incompatible halogen which contributed to efficient encapsulation. However this endgroup effect is only important in systems which do not have a low Tg component. The incorporation of such a component overrides all other contributions to the overall behaviour.

Identiferoai:union.ndltd.org:ADTP/235130
Date January 2005
CreatorsSuch, Georgina, School of Chemical Engineering & Industrial Chemistry, UNSW
PublisherAwarded by:University of New South Wales. School of Chemical Engineering and Industrial Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Georgina Such, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0021 seconds