Return to search

Color Evolution of Kaede-type Red Fluorescent Proteins

abstract: The green fluorescent protein (GFP)-like fluorescent proteins play an important role for the color of reef-building corals. Different colors of extant coral fluorescent proteins (FPs) have evolved from a green ancestral protein. Interestingly, green-to-red photoconversion FPs (Kaede-type Red FPs) are only found in clade D from Scleractinia (Faviina suborder). Therefore, I focus on the evolution of Kaede-type FPs from Faviina suborder ancestral FP. A total of 13 mutations have been identified previously that recapitulate the evolution of Kaede-type red FPs from the ancestral green FP. To examine the effect of each mutation, total ten reconstructed FPs were analyzed and six x-ray crystal structures were solved. These substitutions created a more hydrophilic environment around the carbonyl group of Phe61. Also, they increased the flexibility of the c-terminal chain, which keeps it from interacting with the entrance of the putative solvent channel. The photoconversion reaction shows a twophase kinetics. After the rapid initial phase, the overall reaction followed the firstorder kinetics. Based on the crystal structure analysis, I propose a new mechanism for Kaede-type FP photoconversion process, which a proton transfers via Gln38 to the carbonyl group of Phe61. / Dissertation/Thesis / Ph.D. Chemistry 2012

Identiferoai:union.ndltd.org:asu.edu/item:14732
Date January 2012
ContributorsKim, Hanseong (Author), Wachter, Rebekka M (Advisor), Fromme, Petra (Committee member), Redding, Kevin E (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format128 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0016 seconds