The anticancer properties of dirhodium tetraacetate were discovered in the 1970's, and subsequently motivated the research of several dirhodium paddlewheel derivatives. The promising results of this research led the Dunbar group to investigate the biological properties of dirhodium partial paddlewheel compounds. Previous work in our group has focused on dirhodium carboxylate derivatives with a series of diimine ligands, namely 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq), dipyrido[3,2a:2',3'c] phenazine (dppz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) (dppn). Current research has expanded this diimine series by substituting the carobxylate bridging group with p-methoxyphenylphosphine (PMP). This new series of compounds was characterized by several techniques, including: X-Ray crystallography, 1H NMR spectroscopy, and electronic absorption spectroscopy.
The cytotoxicity of these compounds towards HeLa cells was investigated in presence and absence of light in an effort to investigate the ability to use these compounds as photodynamic therapy (PDT) agents. Cytotoxicity measurements were carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. It was found that in the dark [Rh2(PMP)2(dppz)2][BF4]2 (the dppz derivative of the dirhodium PMP compound) had no cytotoxicity towards HeLa cells, but experienced a 7 fold increase in cytotoxicity upon irradiation (with lambdai_rr equal to 350 nm). This dramatic increase in cytotoxicity upon irradiation makes this compound a potential PDT agent.
Diiridium (II,II) compounds were prepared in a dual attempt to determine how the properties of the dirhodium core effect the biological activities of these compounds, as well as investigate the biological activity of a set of compounds that has yet to be explored. The compound [Ir2(DTolF)2(CH3CN)6][BF4]2 was chosen because it has a well understood dirhodium analogue, and it is a known compound. However, it was discovered that there was a potential silver contamination in the final product, stemming from the silver trifluoroacetate oxidant used during synthesis. Consequently, a new method of preparing this compound was required. The new synthetic pathway for the diiridium compound [Ir2(DTolF)2(CH3CN)6][BF4]2 was devised, and the cytotoxicity and photocytotoxicity studies were performed for the first time (to our knowledge) on a diiridium (II,II) compound. Despite the stability of the compound, it was determined to be highly toxic, both in the dark and upon irradiation.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-08-11877 |
Date | 2012 August 1900 |
Creators | Lane, Sarah Margaret |
Contributors | Dunbar, Kim R. |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0046 seconds