<p>Catalytic combustion is an environmentally benign technologywhich has recently reached the stage of commercialization.Palladium is the catalyst of choice when considering gasturbines fuelled with natural gas because of its superioractivity for methane oxidation. Several fundamental issues arestill open and their understanding would result in animprovement of the technology. Hence, the work presented inthis thesis aims at the identification of some of theparameters which govern the combustion activity ofpalladium-based catalysts.</p><p>The first part of this work gives a background to catalyticcombustion and a brief comparison with other existingtechnologies. Paper I reviews some of the issues related tomaterial development and combustor design.</p><p>The second part of this thesis consists of an experimentalinvestigation on palladium-based catalysts. The influence ofthe preparation method onthe properties of these catalystmaterials is investigated in Paper II. Paper III examines theactivity of the following catalysts: Pd/Al2O3, Pd/Ba-Al2O3 andPd/La-Al2O3. Specific attention is given to the metal-supportinteraction which strongly affects the combustion activity ofpalladium. The effect of doping of the support by addition ofcerium is reported in Paper IV.</p><p>Finally, the deactivation of combustion catalysts isconsidered. The various deactivation processes which may affecthigh temperature combustion catalysts are reviewed in Paper V.Paper VI focuses on the poisoning of supported palladiumcatalysts by sulphur species. Palladium exhibits a higherresistance to sulphur poisoning than transition metals.Nevertheless, the nature of the support material plays animportant role and may entail a severe loss of activity whensulphur is present in the fuel-air mixture entering thecombustion chamber.</p><p><b>Keywords</b>: catalytic combustion, gas turbine, methane,palladium, alumina, barium, lanthanum, oxidation, preparation,temperature-programmed oxidation (TPO), decomposition,reoxidation, X-ray photoelectron spectroscopy (XPS),metal-support interaction, deactivation, sulphur, poisoning.The cover illustration is a TEM picture of a 100 nm palladiumparticle supported on alumina</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-3402 |
Date | January 2002 |
Creators | Thevenin, Philippe |
Publisher | KTH, Chemical Engineering and Technology, Stockholm : Kemiteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Trita-KET, 1104-3466 ; 160 |
Page generated in 0.0023 seconds