Return to search

Preparation and Characterization of Hydrogenase Enzyme Active Site-inspired Catalysts: The Effects of Alkyl Bulk and Conformer Strain as Studied by Photoelectron Spectroscopy, Electrochemistry and Computational Methods

A series of alkyldithiolatodiironhexacarbonyl complexes of the form &mu:-(RS2)Fe2(CO)6, where RS2 is: 1,2-ethanedithiolate (eth-cat), cis-1,2-cyclopentanedithiolate (pent-cat), cis-1,2-cyclohexanedithiolate (hex-cat), and 2-exo,3-exo-bicyclo[2.2.1]heptanedithiolate (norbor-cat), are reported. These complexes display structures and catalytic behavior toward production of molecular hydrogen with similarities to the active site of the diiron hydrogenase enzymes. Hydrogen production is desirable as an alternative fuel source and these catalysts are capable of producing H2 in the presence of weak acid under electrochemical conditions. Through understanding of the factors which control the catalytic activity of these catalysts it may be possible to contribute to the development of a hydrogen fuel economy.Significant scan-rate dependence under electrochemical conditions is observed, resulting in an initial 1-to-2 electron reduction depending on how quickly the singly reduced species can reorganize. The rate of this reorganization directly corresponds to the internal strain within the system and can be ranked in the following order of increasing rate of reorganization: pent-cat < norbor-cat < eth-cat < hex-cat. Additionally, these catalysts all successfully catalyze protons to molecular hydrogen under electrochemical conditions in the presence of acetic acid via an ECEC catalytic mechanism, where, E is an electrochemical step (reduction) and C is a chemical step (protonation).Density functional theory computations support the reported catalytic processes by calculating physically observable quantities, such as: pKa values, reduction potentials, adiabatic ionization energies and carbonyl stretching frequencies in the infrared (IR) region. These quantities were used to suggest reasonable reactive intermediates within the catalytic cycle. The electronic structure of each catalyst was examined using photoelectron spectroscopy and the global minimum cationic structure, in all cases, involves a structure with a bridging carbonyl ligand, akin to that of the enzyme active site.The most significant outcome of this work is the unprecedented diiron center rotation upon reduction. As conformational strain involving the dithiolate ligand increases, the rate of reorganization of the anion increases leading to cleavage of an iron-sulfur bond to provide an alternative protonation site, a key step toward molecular hydrogen formation. This site is less basic than the unrotated form and helps evolve H2 with thermodynamic favorability.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194329
Date January 2009
CreatorsPetro, Benjamin J.
ContributorsLichtenberger, Dennis L, Enemark, John H, Kukolich, Stephen G, Sanov, Andrei, Zheng, Zhiping
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0026 seconds