Recently, bilayer resist processing combined with development in hydro uoroether (HFE) solvents has been shown to enable single color structuring of vacuum-deposited state-of-the-art organic light-emitting diodes (OLED). In this work, we focus on further steps required to achieve multicolor structuring of p-i-n OLEDs using a bilayer resist approach. We show that the green phosphorescent OLED stack is undamaged after lift-off in HFEs, which is a necessary step in order to achieve RGB pixel array structured by means of photolithography. Furthermore, we investigate the in uence of both, double resist processing on red OLEDs and exposure of the devices to ambient conditions, on the basis of the electrical, optical and lifetime parameters of the devices. Additionally, water vapor transmission rates of single and bilayer system are evaluated with thin Ca film conductance test. We conclude that diffusion of propylene glycol methyl ether acetate (PGMEA) through the uoropolymer film is the main mechanism behind OLED degradation observed after bilayer processing.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:34995 |
Date | 14 August 2019 |
Creators | Krotkus, Simonas, Nehm, Frederik, Janneck, Robby, Kalkura, Shrujan, Zakhidov, Alex A., Schober, Matthias, Hild, Olaf R., Kasemann, Daniel, Hofmann, Simone, Leo, Karl, Reineke, Sebastian |
Publisher | SPIE |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1117/12.2080174, info:eu-repo/grantAgreement/Fraunhofer Internal Programs/Grant Attract/62-600032/ |
Page generated in 0.002 seconds