Return to search

Electroluminescent and photoluminescent properties of metal-based compounds

Organic light emitting diodes (OLEDs) are an emerging display technology with the advantages of being efficient, bright, portable and flexible. In this work, a number of novel compounds have been developed for incorporation into OLEDs as emitting dopants. A series of ligands containing dipyrido[3,2-a:2�,3�-c]phenazine substituted at the 11-position with ethyl ester, bromo-, nitrile and 5-phenyl-1,3,4-oxadiazole moieties have been synthesised. Each of the ligands were coordinated to Re(I), Cu(I), Ru(II) and Ir(III) metal centres. Ligands and complexes were characterised by �H NMR and IR spectroscopy, mass spectrometry and microanalysis. Single crystal X-ray analyses were performed on fac-chlorotricarbonyl(dipyrido[3,2-a:2�,3�-c]phenazine-11-carboxylic ethyl ester)rhenium (triclinic, P-1, a = 6.403(5) Å, b = 10.388(5) Å, c = 16.976(5) Å, α = 84.087(5)�, β = 84.161(5)�, γ = 79.369(5)�, Z = 2, R1 = 0.0536, wR2 = 0.0978), fac-chlorotricarbonyl(11-bromodipyrido[3,2-a:2�,3�-c]phenazine)rhenium.CH₃OH (monoclinic, C2/c, a = 19.506(5) Å, b = 18.043(5) Å, c = 13.320(5) Å, α = γ = 90�, β = 114.936(5)�, Z = 4, R1 = 0.0345, wR2 = 0.0827), fac-chlorotricarbonyl(11-cyanodipyrido[3,2-a:2�,3�-c]phenazine)rhenium (triclinic, P-1, a = 6.509(5) Å, b = 12.403(5) Å, c = 13.907(5) Å, α = 96.88(5)�, β = 92.41(5)�, γ = 92.13(5)�, Z = 2, R1 = 0.0329, wR2 = 0.0701), bis-2,2�-bipyridyl(2-(11-dipyrido[3,2-a:2�,3�-c]phenazine)-5-phenyl-1,3,4-oxadiazole)ruthenium triflate.2CH₃CN (triclinic, P-1, a = 10.601(5) Å, b = 12.420(5) Å, c = 20.066(5) Å, α = 92.846(5)�, β = 96.493(5)�, γ = 103.720(5)�, Z = 2, R1 = 0.0650, wR2 = 0.1458) and bis-(2-phenylpyridine-C�,N�)(dipyrido[3,2-a:2�,3�-c]phenazine)iridium(III) hexafluorophosphate.(CH₃)₂CO (triclinic, P-1, a = 13.505(5) Å, b = 16.193(5) Å, c = 19.788(5) Å, α = 92.857(5)�, β = 98.710(5)�, γ = 93.432(5)�, Z = 2, R1 = 0.0494, wR2 = 0.1097).
The ground and excited state properties of the ligands and complexes were investigated by a range of techniques, including electrochemistry, absorption and emission spectroscopy, spectroelectrochemistry and excited state lifetime studies. Complexes of dppz-based ligands typically show MOs which are segregated over either the bpy or phz region of the dppz backbone. The properties of the Ru(II) and Ir(III) complexes of the ligand series investigated in this work were consistent with this model, and the LUMOs of these complexes were assigned as the b₁(phz) phz-localised MO. The Re(I) and Cu(I) complexes of the ligand series appeared to show MOs which were delocalised over the entire dppz ligand.
A modular complex containing an electron transport group, hole transport group and emitting centre was synthesised. The complex fac-tricarbonyl(trans-(E)-1-((2,2�:5�,2��-terthiophen)-3�-yl)-2-(4�-pyridyl)-ethane)(2-(11-dipyrido[3,2-a:2�,3�-c]phenazine)-5-phenyl-1,3,4-oxadiazole)rhenium(I) hexafluorophosphate was oxidised and reduced readily, encouraging efficient transport of both holes and electrons. However, this resulted in the complex having a small band gap and hence a low quantum yield of emission. Emission from this complex appeared to be from more than one state.
The complexes containing the dppz-based ligand series show complicated excited state behaviour. Emission behaviour is consistent with input from more than one state for many of the Re(I), Cu(I) and Ir(III) complexes. The Ru(II) complexes of the ligand series emit from a �MLCT state between metal-based and bpy-based MOs located on the dppz ligands, as is usual for complexes of this type. All complexes containing 11-cyanodipyrido[3,2-a:2�,3�-c]phenazine showed extremely short excited state lifetimes consistent with extremely efficient non-radiative deactivation of the excited state.
Ligands and complexes were incorporated into OLEDs with the structure [ITO/PEDOT:PSS/PVK:BuPBD:dopant/BCP/Alq₃/LiF/Al] to test their ability to behave as emissive dyes. Many of the compounds behaved poorly as dopants due to their low emission quantum yields, and poor alignment of HOMO and LUMO energy levels with those of the other compounds within the device. �MLCT-based emission was achieved through energy transfer from the PVK host for the devices containing chlorotricarbonylrhenium(I) complexes of the ligand series. The OLEDs containing Ru(II) and Ir(III) complexes also emitted from dopant-centred �MLCT states. In these devices, dopant excitation appeared to occur through direct charge trapping from the adjacent hole transport and electron transport layers.

Identiferoai:union.ndltd.org:ADTP/266529
Date January 2007
CreatorsLundin, Natasha J, n/a
PublisherUniversity of Otago. Department of Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Natasha J Lundin

Page generated in 0.0243 seconds