In this work, the optical properties of ZnO doped with arsenic and nitrogen were studied. The ZnO samples were grown by Metalorganic Chemical Vapor Deposition (MOCVD). The solubility of nitrogen in the ZnO films, as well as its activation upon annealing, was also investigated. Hydrogen is known as a major source for passivation of the acceptors in ZnO:N. Therefore, it is crucial to dissociate the complex(es) formed by nitrogen and hydrogen and diffuse out the hydrogen in order to prevent the reformation of such complexes. High temperatures (≥ 600 C) are required for these purposes. In order to effectively remove the hydrogen impurities from the sample, it is important to know the optical fingerprints of hydrogen and its thermal stability. Therefore, the effects of annealing and hydrogen plasma treatment on bulk ZnO (hydrothermally grown) were first studied. The use of bulk material for this purpose was motivated by the well-resolved photoluminescence (PL) lines observed for bulk ZnO, which allow the identification of the different lines related to hydrogen after plasma treatment. Annealing at 850 C was effective for the removal of most of the hydrogen related transitions in the near-band-edge emission. Also, additional transitions at ~3.364 eV and ~3.361 eV were observed after hydrogen plasma treatment, which were ascribed to hydrogen-Zn vacancy complexes. In this work, a comparative study of the annealing ambient and temperature on ZnO films grown on GaAs substrate, using diethyl zinc (DEZn) and tertiary butanol (TBOH), showed that arsenic diffuses in the ZnO films and gives a shallow level in the band gap, which is involved in an acceptor-bound exciton line at 3.35 eV. This shallow level is visible when annealing is performed in oxygen, but not when annealing is performed in nitrogen, and indeed only for annealing temperatures around 550 C. However, annealing in either ambient also causes zinc to diffuse from the ZnO films into the GaAs substrate, rendering the electrical properties deduced from Hall measurements ambiguous. For ZnO:N, NO was used as both oxygen and nitrogen sources. Monitoring the concentration of nitrogen, carbon and hydrogen in the ZnO films, the formation of different complexes from these impurities were deduced. Furthermore, an investigation of the effect of annealing on the concentrations of impurities showed that their out- diffusion was strongly dependent on the crystalline quality of the ZnO films. For porous ZnO films, obtained at low growth temperatures (≤310 C), the out-diffusion of impurities was efficient, whereas for films grown at higher temperatures, which have improved crystalline quality, the out-diffusion was practically nonexistent. The out-diffusion of unwanted impurities may activate the nitrogen dopant in the ZnO films, as was confirmed by the PL measurements on the different samples grown at different temperatures. PL transitions at ~3.24 eV and ~3.17 eV were related to substitutional NO. These transitions were more dominant in the spectra of samples grown at low temperatures. An additional transition at ~3.1 eV was assigned to a donor-acceptor pair transition involving VZn, instead of NO, as previously reported.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10518 |
Date | January 2010 |
Creators | Dangbegnon, Julien Kouadio |
Publisher | Nelson Mandela Metropolitan University, Faculty of Science |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Doctoral, PhD |
Format | i, 116 leaves, pdf |
Rights | Nelson Mandela Metropolitan University |
Page generated in 0.002 seconds