Return to search

Fluorescence Microscopy with Tailored Illumination Light

Fluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization and propagation angle of light gives fluorescence imaging great capabilities ranging from single molecule imaging to long-term observation of living organisms. While numerous fluorescence imaging techniques have been developed over the past decades, there is always an inevitable tradeoff among the spatial resolution, imaging speed, contrast, photodamage and the total cost when it comes to choose the appropriate microscope. A main goal of my dissertation research is to develop state-of-the-art microscope systems that exhibit unprecedented performance in single-molecule fluorescence imaging and live-cell imaging for broader biomedical applications by tailoring the optical illumination beams. In details, I have designed and prototyped: 1) a highly inclined swept illumination for wide-field fluorescence microscope, which greatly improves the sectioning capability with a large field of view and ultrasensitivity; 2) dual inclined line-scan confocal microscope, which reduces photodamage while maintaining the background rejection capability compared to conventional line-scan confocal microscope; 3) a static non-diffracting light-sheet generation by controlling the spatial coherence of light emitting diodes and laser.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1139
Date01 January 2020
CreatorsTang, Jialei
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0018 seconds