Return to search

High-fidelity Mini-LED and Micro-LED Displays

Mini-LED and micro-LED are emerging disruptive display technologies, because they can work as local dimmable backlight to significantly enhance the dynamic range of conventional LCDs, or as sunlight readable emissive displays. However, there are still unresolved issues impairing their display fidelity: 1) motion blur on high-resolution, large-size and high-luminance devices, 2) limited contrast ratio on mini-LED backlit LCD (mLED-LCD), 3) relatively high power consumption, and 4) compromised ambient contrast ratio. This dissertation tackles with each of these issues for achieving high display fidelity. Motion blur is caused by slow liquid crystal response time and image update delays. Low-duty ratio operation can suppress motion blur in emissive displays. However, it induces driving burdens on high-resolution, large-size and high-luminance mLED-LCD panel electronics and demands fast-response liquid crystals. In order to overcome these challenges, in Chapter 2, we propose a novel image-corrected segmented progressive emission method for mitigating the motion blur of mLED-LCDs. In parallel, in Chapter 3 and Chapter 4, we report new liquid crystal materials with submillisecond response time. High dynamic range displays require high peak luminance, true black state and high contrast ratio. While emissive displays intrinsically exhibit high contrast ratio, for LCDs it is limited to 1000:1 ~ 5000:1. In Chapter 5, we develop a simplified model for optimizing mLED-LCD to suppress the halo effect and achieve the same image quality as emissive displays. On the other hand, high luminance may give rise to short battery time and thermal management issues in displays with low power efficiency. In Chapter 6, we build a new model for mini-LED/micro-LED displays to simulate and optimize the power efficiency. In Chapter 7, we jointly consider the LED external quantum efficiency, system optical efficiency and structure-determined ambient light reflection to guide the designs for high ambient contrast ratio with optimal efficiency.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1060
Date01 January 2020
CreatorsHuang, Yuge
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0018 seconds