Return to search

Vliv okolních podmínek na recyklaci solárních modulů / The influence of environmental conditions of the recycling of solar modules

This thesis is focused on experiments, goal of which is to separate protective glass apart from thin layer solar panel. This could lead to less expensive and more efficient recycling. We try to achieve the separation of the glass by thawing ethylene vinyl acetate layer, which serves as insulant and bonding material. Experiments are concluded in high temperature dryer and high temperature vacuum oven on samples of thin layer solar panel, which is for the purposes of experiments cut into same pieces by water jet cutting machine. The initiatory experiments in dryer and oven are to determine value of ethylene vinyl acetate thaw point in tested samples of panel. The thaw point is determined to be 340 °C. When exposed to this temperature, the ethylene vinyl acetate thaws enough for glass to be able to be extracted with minimal physical strength. The process is accompanied by fire destruction of tedlar layer and creation of exhaust gases. Following experiments in vacuum and nitrogen environment are to test their influence on thawing process. Exposing sample to temperature of 340 °C in vacuum led to no new results. Exposing sample to temperature of 340 °C in nitrogen environment prevented fire and achieved same level of thawing of ethylene vinyl acetate while creating less exhaust gases. Even though the fire was prevented, tedlar layer was still destroyed by the high temperature. Furthermore, particles of evaporated ethylene vinyl acetate condensed on surface of module in form of dust. Following experiments studied absorption of panel and influence of accessible solvents on thawing process. It was determined that panel is able to absorb approximately 2 % of acetone, 0,4 % of isopropyl alcohol and 0,11 % of distilled water in its own weight. Experiments with modules soaked in these solvents proved no new results in thawing process. By observing samples of ethylene vinyl acetate taken from module, thawed out of module after experiment in vacuum oven and dust condensed on surface of module after experiment in nitrogen environment, it was proven that the condensed dust is indeed ethylene vinyl acetate.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442429
Date January 2021
CreatorsLanger, Filip
ContributorsVaněk, Jiří, Jandová, Kristýna
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0102 seconds