Στόχος της παρούσας διπλωματικής εργασίας είναι η τροφοδοσία ενός μεταβαλλόμενου RL φορτίου από μια φωτοβολταϊκή γεννήτρια, επιδιώκοντας η τάση σε αυτό να είναι σταθερή κατά μέτρο και συχνότητα. Η επίτευξη του στόχου προϋποθέτει την χρήση μιας σειράς διατάξεων, προκειμένου να δημιουργήσουμε ένα πειραματικό σύστημα πάνω στο οποίο θα αναπτύξουμε την εφαρμογή μας. Έτσι η πειραματική μας διάταξη εκτός από την πηγή (φωτοβολταϊκή γεννήτρια) και το φορτίο αποτελείται και απο έναν τριφασικό αντιστροφέα πηγής τάσης, έναν τριφασικό μετασχηματιστή, ένα βαθυπερατό φίλτρο LC, μια συσκευή βηματικής μεταβολής του φορτίου και έναν μικροεπεξεργαστή με την βοήθεια του οποίου θα υλοποιήσουμε τους απαραίτητους ελέγχους.
Το πρώτο επίπεδο ελέγχου αφορά τον τριφασικό αντιστροφέα και συγκεκριμένα την παλμοδότηση την διακοπτικών του στοιχείων. Με την βοήθεια του μικροεπεξεργαστή πετυχαίνουμε την υλοποίηση του κυκλώματος παλμοδότησης εφαρμόζοντας την μέθοδο της ημιτονοειδούς διαμόρφωσης εύρους παλμών (Sinusoidal Pulse Width Modulation, SPWM). Σε δεύτερο επίπεδο ελέγχου υλοποιούμε έναν PI ελεγκτή ο οποίος σε συνεργασία με το κύκλωμα παλμοδότησης εξασφαλίζει την σταθεροποίηση της τάσης στο φορτίο, συνεπώς και την αδιάλειπτη τροφοδοσία του. Πραγματοποιώντας βηματικές αλλαγές στο φορτίο, καταγράφουμε τις μεταβολές στα μεγέθη εκείνα που επιβεβαιώνουν την λειτουργία και αποδοτικότητα του συνολικού συστήματος ελέγχου.
Ιδιαίτερη αξία έχει ο τρόπος με τον οποίο παράγουμε τον κώδικα που υλοποιεί, μέσω του μικροεπεξεργαστή, το κύκλωμα ελέγχου. Η διαδικασία περιλαμβάνει αρχικά την μοντελοποίηση του κυκλώματος στο Simulink και στην συνέχεια την χρήση των κατάλληλων εργαλείων, οπότε μέσω μιας αυτόματης διαδικασίας παράγεται ο επιθυμητός κώδικας.
Η διπλωματική εργασία διαρθρώνεται με τον εξής τρόπο:
Στο κεφάλαιο 1 γίνεται μια σύντομη αναφορά στον σημαντικό ρόλο που καλούνται να διαδραματίσουν οι ανανεώσιμες πηγές ενέργειας, στις σημερινές και μελλοντικές ανάγκες του τομέα της ηλεκτρικής ενέργειας. Ακολουθεί μια συνοπτική παρουσίαση της φωτοβολταϊκής τεχνολογίας και του τρόπου αξιοποίησής της.
Στο κεφάλαιο 2 γίνεται η πλήρης ανάπτυξη της μεθόδου ημιτονοειδούς διαμόρφωσης εύρους παλμών για την αξιοποίησή της σε μετατροπέα DC/AC (αντιστροφέα), ενός σκέλους και τριφασικού. Παρουσιάζονται αναλυτικά τα χαρακτηριστικά της μεθόδου και ο τρόπος εφαρμογής της σε ψηφιακά συστήματα.
Στο κεφάλαιο 3 γίνεται η περιγραφή και ανάλυση της πειραματικής μας διάταξης. Διαχωρίζοντας το συνολικό σύστημα στα επιμέρους κυκλώματα ισχύος και ελέγχου, περιγράφουμε την κάθε διάταξη ξεχωριστά, αναλύοντας το αντίστοιχο θεωρητικό υπόβαθρο. Ιδιαίτερα, όσον αφορά το κύκλωμα ελέγχου, αναπτύσσουμε συνοπτικά την θεωρία του PI ελέγχου, στον βαθμό που κρίνεται απαραίτητο για την εφαρμογή μας.
Στο κεφάλαιο 4 παρουσιάζεται το σύστημα eZdspTM F28335. Το σύστημα αυτό περιλαμβάνει τον επεξεργαστή ψηφιακού σήματος F28335, με την βοήθεια του οποίου υλοποιούμε το κύκλωμα ελέγχου. Γίνεται αναφορά στις δυνατότητες του συστήματος και περιγράφονται τα περιφερειακά του που χρησιμοποιούνται στην παρούσα εφαρμογή.
Στο κεφάλαιο 5 γίνεται η ανάλυση του μοντέλου Simulink που υλοποιεί το κύκλωμα ελέγχου. Αρχικά, παρουσιάζεται συνοπτικά η διαδικασία ταχείας προτυποποίησης και ο τρόπος με τον οποίο επιτυγχάνουμε την αυτόματη παραγωγή κώδικα μέσω των μοντέλων του Simulink. Στη συνέχεια περιγράφουμε αναλυτικά τα μπλόκ που συνιστούν το μοντέλο της εφαρμογής μας.
Στο κεφάλαιο 6 γίνεται η παρουσίαση των πειραματικών αποτελεσμάτων που προέκυψαν κατά την διάρκεια των μετρήσεων. Συγκεκριμένα παρατίθενται μετρήσεις και γραφήματα που έχουν στόχο να αναδείξουν την λειτουργία του ελέγχου και τον τρόπο με τον οποίο επιδρά στο σύστημά μας.
Στο κεφάλαιο 7 παρουσιάζονται τα τελικά συμπεράσματα και οι πιθανές μελλοντικές προοπτικές της εφαρμογής. / The objective of this thesis is the power supply of a variable RL load, by the use of a photovoltaic generator as our energy source, aiming to a load voltage with constant rms value and frequency. To achieve this objective, involves the use of several devices, in order to create an experimental system on which we will develop our application. Thus, our total system, other than the source (photovoltaic generator) and the load, is composed of a three-phase voltage source inverter (VSI), a three-phase transformer, a low pass LC filter, a device that electronically chooses the value of the load and a microprocessor which implements the necessary control system.
The first part of the control system refers to the generation of the signals that control the switching elements of the three-phase voltage source inverter. With the help of the microprocessor we achieve the implementation of the appropriate pulse generator circuit using a method called sinusoidal pulse width modulation (SPWM). In the second part of the control system we implement a PI controller which, in collaboration with the above circuit, ensures the stabilization of the voltage on the load, therefore the uninterrupted power supply. Making step load changes, we record the variation of those parameters that confirm the operation and efficiency of the entire control system.
Of great importance is the way we produce the code that implements the control circuit, when executed by the microprocessor. The procedure begins with the modeling of the circuit in Simulink, followed by the use of the appropriate development tools that result in an automatic process of production of the desired code.
The thesis is organized in the following way:
In Chapter 1 we give a brief reference to the importance of the renewable energy sources, regarding the present and future needs of the electricity sector. We continue with a summary of the photovoltaic technology and it’s means of exploitation.
In Chapter 2 we make a thorough description of the method called sinusoidal pulse width modulation and we discuss it’s use for the DC/AC converter (inverter), both single-leg and three-phase. We give a full presentation on the characteristics of the method and the manner to be implemented in digital systems.
In Chapter 3 we make the description and analysis of our experimental system. By separating the overall system to two individual parts, the power circuit and the control circuit, we describe each device separately and analyze the relevant theory. In particular, with respect to the control circuit, we summarize the theory of PI controller, to the necessary extent for our application.
In Chapter 4 we introduce the system eZdspTM F28335. This system includes the digital signal processor F28335, which undertakes the implementation of the control circuit. Reference is made to the overall capabilities of the system and especially to the peripherals used in this application.
In Chapter 5 we give the analysis of the Simulink model which implements the control circuit. Initially, we outline the procedure of rapid prototyping and describe the way in which we achieve the automatic production of our executable code through the Simulink models. Then we describe in detail the blocks that form the model of our application.
In Chapter 6 we present the results obtained during the experimental phase. In particular there are listed measurements and graphs that aim to highlight the function of the control system and the manner in which it influences our system.
In Chapter 7 we present our final conclusions and possible future prospects of the application.
Identifer | oai:union.ndltd.org:upatras.gr/oai:nemertes:10889/5737 |
Date | 08 January 2013 |
Creators | Κωστούλας, Στέφανος |
Contributors | Βοβός, Νικόλαος, Kostoulas, Stefanos, Γιαννακόπουλος, Γαβριήλ |
Source Sets | University of Patras |
Language | gr |
Detected Language | Greek |
Type | Thesis |
Rights | 0 |
Page generated in 0.0032 seconds