Return to search

Adventures in main group chemistry: from molecules to materials

Three synthetic methods have been explored for the preparation of several novel boron-substituted amidinates and guanidinates. The extension of heterocumulene insertion chemistries to boron-aryl, boron-metallocene and boron-transition metal moieties has also been achieved and the mechanism of such insertions is addressed via density functional theory modeling techniques. The reactivity of these complexes is also explored, mainly through halide abstraction methodologies to generate boron cations, which are potent Lewis Acids and may be useful in promoting organic transformations or in the polymerization of ethylene. The synthesis and characterization of the elusive monomeric low valent carbenoid boron(I), a compound with a formal lone pair located upon the boron center, has been lacking. The suitability of the guanidinate ligand system to support such a species is also discussed and a combined experimental and theoretical approach to this highly topical problem is also presented. Thirdly, the use of photovoltaics (devices which convert solar energy directly into electricity) as an alternative source of energy outwith fossil fuel technologies is a rapidly growing area of interest. Initial efforts to use a novel approach, which incorporates inorganic nanocrystals wired into a conducting polymer matrix, are also presented. Successful synthetic approaches to the gallium, aluminum and indium monomeric precursors suitable for electropolymerization were developed. These compounds proved to be effective starting points for the generation of conducting polymers with embedded III/VI (Ga₂S₃) nanocrystals with further studies currently underway as to their III/V (InP, GaAs) compatriots. Finally, a retrospective of projects that may best be described in terms of the moniker "Loose Ends and Future Directions" will be presented. The aim of which will be to serve as a useful guidepost for further studies in the fields and topics discussed. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3841
Date29 August 2008
CreatorsFindlater, Michael
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0021 seconds