Les robots humanoïdes sont les plus appropriés pour travailler en coopération avec l'homme. En effet, puisque les humains sont naturellement habitués à collaborer entre eux, un robot avec des capacités sensorielles et de locomotion semblables aux leurs, sera le plus adapté. Cette thèse vise à rendre les robot humanoïdes capables d'aider l'homme, afin de concevoir des 'humanoïdes collaboratifs'. On considère ici la tâche de transport collaboratif d'objets. D'abord, on montre comment l'utilisation simultanée de vision et de données haptiques peut améliorer la collaboration. Une stratégie combinant asservissement visuel et commande en admittance est proposée, puis validée dans un scénario de transport collaboratif homme/humanoïde.Ensuite, on présente un algorithme de génération de marche, prenant intrinsèquement en compte la collaboration physique. Cet algorithme peut être spécifié suivant que le robot guide (leader) ou soit guidé (follower) lors de la tâche. Enfin, on montre comment le transport collaboratif d'objets peut être réalisé dans le cadre d'un schéma de commande optimale pour le corps complet. / Humanoid robots provide many advantages when working together with humans to perform various tasks. Since humans in general have alot of experience in physically collaborating with each other, a humanoid with a similar range of motion and sensing has the potential to do the same.This thesis is focused on enabling humanoids that can do such tasks together withhumans: collaborative humanoids. In particular, we use the example where a humanoid and a human collaboratively carry and transport objectstogether. However, there is much to be done in order to achieve this. Here, we first focus on utilizing vision and haptic information together forenabling better collaboration. More specifically the use of vision-based control together with admittance control is tested as a framework forenabling the humanoid to better collaborate by having its own notion of the task. Next, we detail how walking pattern generators can be designedtaking into account physical collaboration. For this, we create leader and follower type walking pattern generators. Finally,the task of collaboratively carrying an object together with a human is broken down and implemented within an optimization-based whole-bodycontrol framework.
Identifer | oai:union.ndltd.org:theses.fr/2015MONTS224 |
Date | 16 December 2015 |
Creators | Agravante, Don Joven |
Contributors | Montpellier, Kheddar, Abderrahmane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0076 seconds