Return to search

A study of the impact of doubling carbon dioxide and solar radiation variations on the climate system

The exchange of moisture and heat between the atmosphere and the Earth's surface fundamentally affect the dynamics and thermodynamics of the climate system. In order to trace moisture flow through the climate system and examine its impact on climate, a hydrologic cycle and a land energy balance have been developed and incorporated into a coupled climate-thermodynamic sea ice (CCSI) model. The expanded CCSI model has been tested by comparing computed climate parameters with available observations and GCM modeling results. In general, the expanded model does a good job in simulating the large scale features of the atmospheric circulation and precipitation in both space and time.
The expanded model has been used to examine the possibility that increased levels of CO$\sb2$ in the atmosphere may induce the growth of Northern Hemisphere ice sheets. Results of the study indicate that if summer ice albedo is high enough, and there is some mechanism for initially maintaining ice through the summer season, then it may be possible to have ice sheet growth under the conditions CO$\sb2$ induced warming, mainly the result of decreased summer ice melt in response to the higher land ice albedo, and not an increase in precipitation.
The expanded model has also been used to examine the impact of Milankovitch solar radiation variations on the climate system, to study the mechanisms that produce glacial-interglacial cycles, especially with respect to the initiation of ice sheets. The results show the Milankovitch solar radiation variations affect the climate system most in the polar regions with the mean annual surface air temperature varying directly in response to changes in the annually averaged incoming solar radiation. However, the seasonal variations in the surface air temperatures are much more complex with large magnitude variations for brief times during the year. The study indicates that ice sheets may start to grow under the conditions of low insolation that occurred at 25, 70, and 115 kyr BP and a land ice minimum albedo of 0.53, with the largest growth rate at 115 kyr BP, approximately when the current 100 kyr cycle began as observed in the geological record.

Identiferoai:union.ndltd.org:RICE/oai:scholarship.rice.edu:1911/16723
Date January 1994
CreatorsChu, Shaoping
ContributorsLedley, Tamara Shapiro
Source SetsRice University
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Text
Format153 p., application/pdf

Page generated in 0.0015 seconds