In this study, a computer code is developed in MATLAB® / to compute the Radar Cross Section (RCS) of arbitrary shaped complex targets by using Physical Optics (PO) and Modified PO. To increase the computational efficiency of the code, a novel fast integration procedure for oscillatory integrals, called Levin&rsquo / s integration, is applied to PO integrals.
In order to improve the performance of PO near grazing angles and to model diffraction effects, a method called PO with Modified Surface Normal Vectors is implemented. In this method, new surface normals are defined to model the diffraction mechanism.
Secondary scattering mechanisms like multiple scattering and shadowing algorithms are also included into the code to obtain a complete RCS prediction tool. For this purpose, an iterative version of PO is used to account for multiple scattering effects. Indeed, accounting for multiple scattering effects automatically solves the shadowing problem with a minor modification. Therefore, a special code for shadowing problem is not developed.
In addition to frequency domain solutions of scattering problems, a waveform analysis of scattered fields in time domain is also comprised into this thesis. Instead of direct time domain methods like Time Domain Physical Optics, a Fourier domain approach is preferred to obtain the time domain expressions of the scattered fields.
Frequency and time domain solutions are obtained for some simple shapes and for a complex tank model for differently polarized incident fields. Furthermore, a statistical analysis for the scattered field from the tank model is conducted.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12609810/index.pdf |
Date | 01 August 2008 |
Creators | Durgun, Ahmet Cemal |
Contributors | Kuzuoglu, Mustafa |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0018 seconds