Starches isolated from sixteen quinoa lines ranged in amylose content from 3 to 20%. With the exception of pasting temperature, large variations in pasting characteristics were found among starches and were correlated with amylose content. The gelatinization onset (44.7-53.7 ºC) and peak (50.5-61.7 ºC) temperatures and retrogradation tendencies (19.6-40.8%) were positively correlated with amylose content. No significant variation in gelatinization enthalpy was observed. Swelling, solubility, freeze-thaw stability and water-binding capacity also differed among starches and were correlated with amylose content. The wide variation in amylose content and physicochemical characteristics among quinoa starches suggests applications in a variety of food and non-food products.
Two major polypeptides with apparent molecular masses of 56 and 62 kDa were present in quinoa starch and were identified as isoforms of Granule Bound Starch Synthase I (GBSSI). The content of the two isoforms was positively correlated with the concentration of amylose in starch. Starch synthase activity in developing seed was positively correlated with the amylose concentration in starch during seed development.
An integrated process was developed for the fractionation of quinoa into starch, protein, oil and saponins. Seed was first roller milled, yielding a coarse bran fraction (48% of the seed weight) that was high in protein (22.9%, db), oil (8.8%, db), and saponins (7.4%, db), and a fine, starch-rich fraction [52% of the seed weight containing 77.2% (db) starch]. Protein, oil and saponins were extracted from the bran under optimized conditions. The protein extracts were concentrated and purified using isoelectric precipitation or ultrafiltration. The means of concentration as well as the presence of saponins strongly affected protein recovery and functionality. Starch was recovered using aqueous alkali (pH 9) to solubilize the protein followed by centrifugation, after which the starch-rich pellet was washed and the sediment which accumulated on top of the pellet was removed. The end-products of the integrated extraction process were a crude saponin extract, a crude oil product, and several protein and starch products. Forty-one percent of the protein present in the seed was recovered as a protein product that contained over 77% (db) protein. Sixty-eight percent of the starch was recovered as a starch product that contained 97% (db) starch and 1.2% (db) protein.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-08152005-110823 |
Date | 15 August 2005 |
Creators | Lindeboom, Nienke |
Contributors | Pegg, Ronald B., Khachatourians, George G., Hoover, R., Chibbar, Ravindra N., Chang, Peter R., Tanaka, Takuji, Tyler, Robert T. (Bob) |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-08152005-110823/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0022 seconds