Return to search

Infrared excesses from accretion streams in pre-main-sequence binaries

We used Smoothed Particle Hydrodynamics to study the formation and evolution of mass streams that transfer material from a circumbinary disk to the stars of a close binary. These streams form when the disk is hot enough and/or viscous enough (thickness-to-radius ratio c ≥ 0.05, for viscosity parameter alpha > 0.01).
We modeled binaries with different mass ratios and eccentricities and calculated the spectral energy distribution of the binary-disk system, for an optically thick disk. We focused on the variation of the excess in the N band (effective wavelength ∼11mum). The result of the mass streams is a considerable infrared excess that varies over the binary period. This variability is observable and can be used as a diagnostic element in the study of very close binary systems, because its presence is a sign of stream accretion. There is a periodicity in this variation, with a period equal to the binary period. The general pattern the excess follows is that it is larger at the periastron of the orbit.
We also examined the role of the temperature profile in the formation of the streams. We found that for a hotter disk temperature profile ( T ∼ 1/R1/2) streams form even for moderate values of thickness-to-radius ratio (c ≈ 0.03). Thus, systems like DQ Tau (c ≈ 0.03--0.045) may have such streams, something that previously was questioned.

Identiferoai:union.ndltd.org:RICE/oai:scholarship.rice.edu:1911/17467
Date January 2000
CreatorsStamatellos, Dimitrios
ContributorsHartigan, Patrick M.
Source SetsRice University
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Text
Format84 p., application/pdf

Page generated in 0.006 seconds