Return to search

Type I x-ray bursts in GS 1826-24

Type I X-ray bursts in low-mass X-ray binaries are well understood to be due to thermonuclear flashes from accreting neutron stars. Previous work on the modeling of bursts from GS 1826-24 has had good results in reproducing the main bursting characteristics, particularly the lightcurves. We show that with a simple model for a spreading burning front, we are able to build on those previous results and improve the agreement in the lightcurves as well as find good agreement with the evolution of the burst spectrum. We also investigate the decrease in inferred emission area observed in bursts from this same source at very late times during the bursts. We show that with a very simple model for Comptonization of a blackbody spectrum, we were able to reproduce, and thus provide a possible explanation for, the observed behaviour of the spectrum. / Nous démontrons qu'avec un simple modèle de propagation du front d'une explosion en rayons X, nous pouvons bien reproduire par simulations le flux et le spèctre observés pendant les premiers instants d'explosions provenant de la source GS 1826-24. Nous démontrons aussi qu'avec un simple modèle de Comptonisation d'un spèctre de corps noir, nous pouvons reproduire, and ainsi possiblement expliquer l'observation de la baisse de l'aire d'émission déduite pendant la fin des explosions.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.95055
Date January 2010
CreatorsZamfir, Michael
ContributorsAndrew Cumming (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Physics)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.021 seconds