Return to search

The Diversity and Versatility of Gamma-Ray Bursts

Gamma-ray bursts (GRBs) are the most energetic explosions in the Universe, thus providing a unique laboratory for the study of extreme astrophysical processes. In parallel, their large luminosity makes GRBs a premier probe of the early Universe. My thesis has explored and exploited both aspects of GRB science by addressing the following fundamental open questions: 1) what is the nature of the GRB ejecta?, 2) how does the GRB progenitor population evolve with redshift, and 3) how can GRBs be used to probe the high-redshift Universe? To answer these questions, I present the first multi-wavelength detection and modeling of a GRB reverse shock, a comprehensive analysis of the plateau phase of GRB light curves, studies of the evolution of the progenitor population to redshifts, z~9, and demonstrate the use of GRBs as probes of galaxy formation and evolution through the first galaxy mass-metallicity relation at z~3-5. I find support for baryonic ejecta in GRB~130427A, evidence that GRB jets contain a large amount of energy in slow-moving ejecta, and proof that the GRB progenitor population does not evolve to the highest redshifts at which it has yet been observed. Building on the decade of observations by the Swift GRB mission, future observations and modeling of GRBs and their host galaxies will provide clues to these and other open questions in GRB science, allowing for the first statistical studies of their progenitors and host environments to the epoch of reionization and beyond. / Astronomy

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/17467212
Date17 July 2015
CreatorsLaskar, Tanmoy
ContributorsMoran, James, Berger, Edo
PublisherHarvard University
Source SetsHarvard University
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation, text
Formatapplication/pdf
Rightsopen

Page generated in 0.1543 seconds