L'outil développé dans le cadre de cette thèse est disponible à l'adresse suivante: www.astro.umontreal.ca/~malo/banyan.php / Près de 70% des étoiles de la Galaxie ont une masse inférieure à ~0.8 Msun.
Cependant, étant donné que ces étoiles sont plus difficilement observables en raison de leur plus faible luminosité, cette statistique ne reflète pas le recensement actuel de la population d'étoiles de faible masse dans le voisinage solaire, ni dans les groupes cinématiques d'étoiles jeunes. Cette population a une grande importance pour contraindre la forme de la fonction de masse Galactique, et aussi pour contraindre les modèles évolutifs.
Les étoiles de faible masse sont aussi d'excellentes cibles pour la recherche d'exoplanètes avec des techniques variées (imagerie directe, vitesse radiale, transit). La caractérisation des exoplanètes autour de ces étoiles est tributaire des connaissances fondamentales sur celles-ci, c'est-à-dire de leur luminosité bolométrique, température effective, rayon et âge.
Dans la présente thèse, dont le but est d'identifier et caractériser les étoiles de faible masse, une méthode statistique a été développée afin d'établir quantitativement l'appartenance d'une étoile à un groupe en dérivant une probabilité d'association. Cette méthode combine l'inférence Bayesienne et des modèles empiriques de plusieurs observables, dont la luminosité, vitesse spatiale et position galactique, de membres confirmés de 7 groupes d'étoiles jeunes (8-120 Mans) ainsi que d'étoiles vieilles du champ. Les étoiles ayant une probabilité d'association minimale de 90% sont considérées comme des candidates. L'analyse développée prédit aussi la vitesse radiale et la distance trigonométrique qu'une étoile aurait dans une association donnée. L'analyse a montré, pour les 177 membres confirmés, un excellent accord entre les paramètres prédits et observés, soit de 1.9 km/s et 10% respectivement, pour la vitesse radiale et la parallaxe. La mesure de ces paramètres pour les candidates est donc une bonne manière de confirmer leur appartenance à l'association. Cette méthode robuste a été appliquée sur un échantillon de 758 étoiles montrant des signes de jeunesse (émission H$\alpha$ et rayons X).
L'analyse a permis d'identifier 214 candidates hautement probables, et le suivi spectroscopique de ces étoiles a permis, jusqu'à présent, de confirmer la justesse de la prédiction en vitesse radiale pour 130 étoiles. Ces observations spectroscopiques ont aussi permis de mesurer leur vitesse de rotation, qui s'est avérée élevée comparativement aux étoiles vieilles du champs. La mesure de la distance trigonométrique était aussi en accord avec la prédiction pour 18 candidates jeunes. Grâce aux membres dont l'appartenance à un groupe jeune a été confirmée, un modèle empirique de la luminosité en rayon X des étoiles a pu être établi. Cette luminosité s'est avérée significativement plus élevée (environ 4 fois plus) pour les étoiles des groupes les plus jeunes (~8-12 Mans) que pour celles des groupes plus vieux (~120 Mans). Cet observable constitue donc un bon indicateur d'âge.
La comparaison des spectres de 59 candidates à des modèles d'atmosphère a permis de déterminer trois paramètres fondamentaux: la luminosité bolométrique, la température effective et le rayon. Globalement, les candidates jeunes ont une luminosité plus élevée et un rayon plus grand que les étoiles vieilles. De récents modèles évolutifs incluant le traitement d'une dynamo de type rotationnel et générant un champ magnétique de surface de 1 à 2.5 kGauss ont été utilisés pour déterminer l'âge isochronal de ces étoiles.
Les âges ainsi déterminés pour les étoiles de l'association \beta Pictoris en utilisant des étoiles de types spectraux différents sont davantage cohérents (types K5V-M0V: 24 Mans, types M1V-M4V: 14 Mans) et sont aussi cohérents avec l'âge déterminé indépendamment pour le groupe en utilisant l'abondance du lithium des membres de faible masse (26 Mans). / About 70% of the stars in the Galaxy have a mass inferior than ~0.8 Msun. However, this statistic does not reflect the current census population of low mass in the solar neighborhood
and in young kinematic groups, since their low luminosity make their observation more difficult. This population is of great interest to check the validity of the Galactic mass function, and also to constraint evolutionary models. The low-mass stars are also excellent targets for the search for exoplanets using various techniques (direct imaging, radial velocity, transit).
The characterization of the exoplanets orbiting these stars depends mostly on our basic knowledge of the host star, that is their bolometric luminosity, effective temperature, radius and age.
The present thesis aim to identify and characterize low-mass stars. Toward that end, a statistical method has been developed to determine quantitatively the membership probability of a star to a young kinematic group. This method combines the Bayesian inference and empirical models of several observables such as the brightness, Galactic space velocity and position of bona fide members of 7 young stars groups (8-120 Mans), as well as old field stars. Stars with a membership probability greater than 90% are considered candidate members. The analysis also predicts the radial velocity and distance that a star would have if it was an actual member. For the 177 previously-known members, an excellent agreement was found between the predicted and observed parameters (1.9 km/s
and 10% for the radial velocity and parallax, respectively). Measuring these observables for the candidates stars is thus a good way to confirm their membership.
This robust method was applied to a sample of 758 stars which showed signs of youth (H$\alpha$ and X-ray emission). It allowed to identify 214 highly probable candidates.
The spectroscopic follow-up yields a radial velocity in agreement with predictions for 130 stars. These spectroscopic observations also allowed to measure their projected rotational velocity, which turned out to be higher than that of the old population of stars.
Trigonometric distance measurements were also obtained and were coherent with predictions for 18 young candidates. Using the confirmed members, a new empirical model of the X-ray luminosity was developed. The X-ray luminosity was found to be about 4 times higher for stars around ~8-12Myr than for older, ~120Myr stars, thus, this observable is a good age indicator in this range.
Comparing the spectra of 59 young candidate members to atmosphere models allowed to determine three basic parameters: the bolometric luminosity, the effective temperature and the radius. Overall, these candidates are more luminous and have a greater radius than old stars. Recent evolutionary models that include the rotational dynamo-type treatment and produce magnetic field strength of 1 to 2.5 kGauss were used to derive an isochronal age for each star. The ages determined for \beta Pictoris moving group members using stars of different spectral types are coherent with one another (types K5V-M0V: 24 Mans, types M1V-M4V: 14 Mans) and are also coherent with age determined independently using lithium abundance of the low-mass members (26 Mans).
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/11419 |
Date | 06 1900 |
Creators | Malo, Lison |
Contributors | Doyon, René |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0023 seconds