Return to search

A model of the electric arc attachment on non-refractory (cold) cathodes /

In this work, a physical model describing the electric arc attachment on electron emitting non-refractory (cold) cathodes is developed and applied to Cu, Fe and Ti cathodes. The model considers the possibility of a pressure build up in the cathode region due to the strong vaporization of the cathode, the formation of a cathode sheath according to the Bohm's model, and the ion-enhanced thermo-field emission of electrons by the cathode surface. The self-sustaining operating conditions of the discharge are defined by two simple criteria based on particle and energy balance considerations. Results clearly show the necessity of having high local metallic vapor pressures in the cathode region of non-refractory cathodes in order to have a self-sustaining arc attachment. A minimum pressure of at least 19 atm is needed for a Cu cathode. This minimum pressure is shown to decrease as the cathode material boiling temperature increases according to an exponential decay law. Current densities of the order of 1010 A m--2 are maintained at the surface of a Cu cathode mainly by the emitted electrons. A comparison of the three different models for the electron emission current found in the literature allowed to define the limits of validity of each model for two typical arc-cathode interaction systems, and to evaluate the underestimation made on the emission current density when a less appropriate model is used. This underestimation is shown to cause an overestimation of important parameters such as the cathode surface temperature and metallic vapor pressure in the cathode region. An analysis of the mechanisms of heat transfer to the cathode surface allowed to show that the confinement of the cathode spot plasma forming the arc attachment could favor the production of vapors to the detriment of liquids. Such a phenomenon is of importance in Arc Ion Plating for instance. Heat losses by conduction in the cathode bulk larger than 1010 W m--2 are shown to favor the formation of liquid

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.34710
Date January 1997
CreatorsCoulombe, S. (Sylvain)
ContributorsMeunier, Jean-Luc (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Chemical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001617786, proquestno: NQ44393, Theses scanned by UMI/ProQuest.

Page generated in 0.0011 seconds