Return to search

Far-infrared properties of halide glasses by molecular dynamics

Recent discoveries of low-loss, far-infrared transmitting halide glasses have sparked much interest in extending fiber-optic technology into the infrared region. However, a far greater than theoretical loss has been observed which has slowed research in the field. For this reason, computer modeling of several halide glass systems was performed in order to develop a fundamental understanding of the relationships between structural and optical properties of these glasses. ZrF₄, ZrF₄/BaF₂, ZnCl₂ glasses and melts were prepared using an isothermal-isobaric molecular dynamics algorithm. The infrared spectra were then calculated by Fourier transforming the dipole moment autocorrelation functions of the basic structural units. The more ionic ZrF₄ based glasses showed good agreement with experimental data, whereas the covalently bonded ZnCl₂ glass did not. Addition of barium to ZrF₄ glass was found to reduce high frequency modes of vibration in the glass.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277257
Date January 1990
CreatorsHarrison, Richard Allen, 1963-
ContributorsDeymier, Pierre Alix
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0027 seconds